Makers and open hardware for innovation

Just like the garage computer explosion of the 70’s through the 80’s, which brought us such things as Apple, pong, Bill Gate’s hair, and the proliferation of personal computers, the maker movement is the new garage hardware explosion. Today, 135 million adults in the United States alone are involved in the maker movement.

Enthusiasts who want to build the products they want, from shortwave radios to personal computers, and to tweak products they’ve bought to make them even better, have long been a part of the electronics industry. By all measures, garage-style innovation remains alive and well today, as “makers” as they are called continue to turn out contemporary gadgets, including 3D printers, drones, and embedded electronics devices.

Making is about individual Do-It-Yourselfers being able to design and create with tools that were, as of a decade or two ago, only available to large, cash-rich corporations: CAD tools, CNC mills, 3D printers, low-quantity PCB manufacturing, open hardware such as Arduinos and similar inexpensive development boards – all items that have made it easier and relatively cheap to make whatever we imagine. For individuals, maker tools can change how someone views their home or their hobbies. The world is ours to make. Humans are genetically wired to be makers. The maker movement is simply the result of making powerful building and communication tools accessible to the masses. There are plenty of projects from makers that show good engineering: Take this Arduino board with tremendous potential, developed by a young maker, as example.

The maker movement is a catalyst to democratize entrepreneurship as these do-it-yourself electronics are proving to be hot sellers: In the past year, unit sales for 3D printing related products; Arduino units, parts and supplies; Raspberry Pi boards; drones and quadcopters; and robotics goods are all on a growth curve in terms of eBay sales. There are many Kickstarter maker projects going on. The Pebble E-Paper Watch raises $10 million. The LIFX smartphone-controlled LED bulb raises $1.3 million. What do these products have in common? They both secured funding through Kickstarter, a crowd-funding website that is changing the game for entrepreneurs. Both products were created by makers who seek to commercialize their inventions. These “startup makers” iterate on prototypes with high-end tools at professional makerspaces.

For companies to remain competitive, they need to embrace the maker movement or leave themselves open for disruption. Researchers found that 96 percent of business leaders believe new technologies have forever changed the rules of business by democratizing information and rewiring customer expectations. - You’ve got to figure out agile innovation. Maybe history is repeating itself as the types of products being sold reminded us of the computer tinkering that used to be happening in the 1970s to 1990ssimilar in terms of demographics, tending to be young people, and low budget. Now the do-it-yourself category is deeply intertwined with the electronics industry. Open hardware is in the center in maker movement – we need open hardware designs! How can you publish your designs and still do business with it? Open source ecosystem markets behave differently and therefore require a very different playbook than traditional tech company: the differentiation is not in the technology you build; it is in the process and expertise that you slowly amass over an extended period of time.

By democratizing the product development process, helping these developments get to market, and transforming the way we educate the next generation of innovators, we will usher in the next industrial revolution. The world is ours to make. Earlier the PC created a new generation of software developers who could innovate in the digital world without the limitations of the physical world (virtually no marginal cost, software has become the great equalizer for innovation. Now advances in 3D printing and low-cost microcontrollers as well as the ubiquity of advanced sensors are enabling makers to bridge software with the physical world. Furthermore, the proliferation of wireless connectivity and cloud computing is helping makers contribute to the Internet of Things (IoT). We’re even beginning to see maker designs and devices entering those markets once thought to be off-limits, like medical.

Historically, the education system has produced graduates that went on to work for companies where new products were invented, then pushed to consumers. Today, consumers are driving the innovation process and demanding education, business and invention to meet their requests. Makers are at the center of this innovation transformation.

Image source: The world is ours to make: The impact of the maker movement – EDN Magazine

In fact, many parents have engaged in the maker movement with their kids because they know that the education system is not adequately preparing their children for the 21st century. There is a strong movement to spread this DIY idea widely. The Maker Faire, which launched in the Bay Area in California in 2006, underlined the popularity of the movement by drawing a record 215,000 people combined in the Bay Area and New York events in 2014. There’s Maker Media, MakerCon, MakerShed, Make: magazine and 131 Maker Faire events that take place throughout the world. Now the founders of all these Makers want a way to connect what they refer to as the “maker movement” online. So Maker Media created a social network called MakerSpace, a Facebook-like social network that connects participants of Maker Faire in one online community. The new site will allow participants of the event to display their work online. There are many other similar sites that allow yout to present yout work fron Hackaday to your own blog. Today, 135 million adults in the United States alone are involved in the maker movement—although makers can be found everywhere in the world.

 

7,074 Comments

  1. Tomi Engdahl says:

    DIY website lays down steps to make a chess cheating tool
    It can be undetectable if you know where to put it.
    https://interestingengineering.com/culture/diy-website-steps-chess-cheating-tool

    Reply
  2. Tomi Engdahl says:

    A Cyberdeck That Fits on Your Keychain
    Almost by accident, Omar ended up with a cyberdeck that fits on a keychain.
    https://www.hackster.io/news/a-cyberdeck-that-fits-on-your-keychain-e3c1c8877664

    Reply
  3. Tomi Engdahl says:

    Breadboarded Spotify karaoke device with NodeMCU shows lyrics on small LCD display.
    https://www.hackster.io/news/esp8266-spotify-karaoke-3389db94f390

    Reply
  4. Tomi Engdahl says:

    Let’s Experiment with an Electromagnetic Chain!
    https://www.youtube.com/watch?v=JbRLoWzHVEA

    Have you ever seen an electromagnetic chain? Its a series of electric and magnetic toroid cores linked in the form of a chain transferring power from electricity to magnetism and back again as it works it way along the device. Its a great hands-on illustration of Maxwell’s equations as well as an illustration of transformer action taken to extremes.

    Reply
  5. Tomi Engdahl says:

    MiniTKL
    A compact ten-keyless keyboard
    https://hackaday.io/project/187932-minitkl

    I’m mainly a programmer, not an electronic engineer, which means that I have to type a lot, but at the same time I need to use the mouse. Recently I got tired of not having the keyboard perfectly centered, and having instead to keep it “to the left” to leave space to keep the mouse in a comfortable position. That’s why I started to search for alternative, more compact keyboards.

    The first ones that I found were the “ten-keyless” versions. Unfortunately, in general these aren’t very compact since they usually keep some space between the navigation and letter islands, and also some border.

    Reply
  6. Tomi Engdahl says:

    XBoard
    Extensible Keyboard – RGB HotSwap keyboard with extensibility points.
    https://hackaday.io/project/187938-xboard

    Reply
  7. Tomi Engdahl says:

    Fully Analog 60% HID Cluster
    https://hackaday.io/project/187584-fully-analog-60-hid-cluster

    Custom Human Interface Device with suite of fully-analog inputs.
    Keyboard, Mouse, Dual Joystick (HOSAS), Dual Throttle(HOTAT), and HOTAS.

    Reply
  8. Tomi Engdahl says:

    4-Channel NiMH/Li-Ion Battery Tester
    https://hackaday.io/project/173599-4-channel-nimhli-ion-battery-tester

    Determine the capacity of your battery stash…useful for battery pack and powerwall construction.

    Reply
  9. Tomi Engdahl says:

    Simulating Temperature In VR Apps With Trigeminal Nerve Stimulation
    https://hackaday.com/2022/10/24/simulating-temperature-in-vr-apps-with-trigeminal-nerve-stimulation/

    Virtual reality systems are getting better and better all the time, but they remain largely ocular and auditory devices, with perhaps a little haptic feedback added in for good measure. That still leaves 40% of the five canonical senses out of the mix, unless of course this trigeminal nerve-stimulating VR accessory catches on

    https://github.com/humancomputerintegration/trigeminal-based-temperature-illusions

    Reply
  10. Tomi Engdahl says:

    Plumbing Valves As Heavy Duty Analog Inputs
    https://hackaday.com/2022/10/24/plumbing-valves-as-heavy-duty-analog-inputs/

    Input devices that can handle rough and tumble environments aren’t nearly as varied as their more fragile siblings. [Alastair Aitchison] has devised a brilliant way of detecting inputs from plumbing valves that opens up another option. (YouTube) [via Arduino Blog]

    While [Aitchison] could’ve run the plumbing valves with water inside and detected flow, he decided the more elegant solution would be to use photosensors and an LED to simplify the system. This avoids the added cost of a pump and flow sensors as well as the questionable proposition of mixing electronics and water. By analyzing the change in light intensity as the valve closes or opens, you can take input for a range of values or set a threshold for an on/off condition.

    https://blog.arduino.cc/2022/10/22/plumbing-valves-make-great-heavy-duty-analog-inputs/

    Make HEAVY DUTY analog inputs for Arduino / ESP32 / RaspPi projects using…. plumbing valves?!
    https://www.youtube.com/watch?v=P19wPlyA3rQ

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*