The holy grail of LED lighting, achieving white light in the most efficient and cost-effective way is a hot topic, both among established manufacturers and in academia.
Traditional approaches include color down-conversions, combining high energy LEDs emitting in the blue or near ultra-violet band with a mix of phosphors that re-emit at different wavelengths. Generally, this approach emulates an incomplete white light spectrum at a lesser quantum efficiency than the original emitter (the LED covered in phosphor). The phosphors’ limited lifetime compared to that of the actual LED illuminating them can also negatively impact the overall longevity of the white light.
Other solutions combine multiple LED dies emitting at different peak wavelengths, but here again, white is a short-lived illusion, missing out on the natural continuum of true white light.
A team of researchers from the University of Hong Kong is confident broadband white light could be obtained from monolithic LED dies. In their recently published ACS Photonics paper “Monolithic Broadband InGaN Light-Emitting Diode”, the researchers disclose promising results using high indium content InGaN-GaN quantum well structures grown on a sapphire substrate.
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it.
We are a professional review site that has advertisement and can receive compensation from the companies whose products we review. We use affiliate links in the post so if you use them to buy products through those links we can get compensation at no additional cost to you.OkDecline
1 Comment
Tomi Engdahl says:
Nano-structured InGaN LED Yields White Light
http://www.eetimes.com/document.asp?doc_id=1330024&
The holy grail of LED lighting, achieving white light in the most efficient and cost-effective way is a hot topic, both among established manufacturers and in academia.
Traditional approaches include color down-conversions, combining high energy LEDs emitting in the blue or near ultra-violet band with a mix of phosphors that re-emit at different wavelengths. Generally, this approach emulates an incomplete white light spectrum at a lesser quantum efficiency than the original emitter (the LED covered in phosphor). The phosphors’ limited lifetime compared to that of the actual LED illuminating them can also negatively impact the overall longevity of the white light.
Other solutions combine multiple LED dies emitting at different peak wavelengths, but here again, white is a short-lived illusion, missing out on the natural continuum of true white light.
A team of researchers from the University of Hong Kong is confident broadband white light could be obtained from monolithic LED dies. In their recently published ACS Photonics paper “Monolithic Broadband InGaN Light-Emitting Diode”, the researchers disclose promising results using high indium content InGaN-GaN quantum well structures grown on a sapphire substrate.