Evolution of Mobile Communication from 1(G) to 4G, 5G, 6G, 7G …

http://vitorr.com/post-details.php?postid=2615

The cellular wireless Generation (G) generally refers to a change in the nature of the system, speed, technology and frequency. Each generation have some standards, capacities, techniques and new features which differentiate it from the previous one.

Now 5G is hot technology at the top of the hype cycle. But that’s not the end of story, because when we will see that 5G does not fullfill all the promises, we start looking for to implement next version after it: 6G.

370 Comments

  1. Tomi Engdahl says:

    Microwave/THz Instrumentation Assesses, Resolves PV-Material Performance Data
    March 18, 2022
    Sophisticated instrumentation using microwaves and terahertz waves can assess the likely effectiveness of promising photovoltaic materials.
    https://www.mwrf.com/technologies/test-measurement/article/21236575/electronic-design-microwavethz-instrumentation-assesses-resolves-pvmaterial-performance-data?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220318064&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  2. Tomi Engdahl says:

    Steerable CMOS Sub-THz MIMO Array Combines High Density, Precision, Low Power
    April 13, 2022
    Using a unique high-density array of controllable reflective elements, a team at MIT has devised a highly steerable, 265-GHz phased array with extreme narrow-beam capability.
    https://www.electronicdesign.com/technologies/communications/article/21238962/electronic-design-steerable-cmos-subthz-mimo-array-combines-high-density-precision-low-power

    What you’ll learn:

    Why a reflective array offers benefits compared to active elements in a high-density array.
    How a binary phase-control scheme is used in place of conventional phasing for extremely low power, high-density tiling.
    How the system was tested for 2D and 3D performance.

    There’s lots of interest and activity in the high-gigahertz/low-terahertz part of the electromagnetic spectrum for many reasons: available bandwidth, unique penetration characteristics, short wavelengths and high resolution, and small size, among others. But successfully channeling this energy is a challenge, as most applications require a highly steerable, controllable, very thin beam directed over a wide angle using a large number of elements in the array.

    Now, a team led by recent Ph.D. Nathan Monroe at the Terahertz Integrated Electronics Group at MIT, in conjunction with Intel Corp., has devised and demonstrated a 98- × 98-element (let’s call it 10,000 elements) steerable sub-terahertz MIMO antenna array (Fig. 1).

    It’s fabricated as a tiled, “stitched together” CMOS device measuring 5.6 × 5.6 cm, using Intel’s 22-nm FinFET process. The final device was tested in a variety of radiation pattern and 2D/3D imaging arrangements and demonstrated a narrow 1° 3-dB beamwidth.

    It’s one thing to place all these antennas—however they’re fabricated—on a small footprint. It’s another to actually control them and their relative phasing to steer the beam. Conventional approaches would have shortcomings due to losses, inter- and intra-element routing complexity and congestion, and assuring phase synchronization. In addition, the size and power requirements for each individual antenna’s control can be overwhelming,

    Leveraging a Reflectarray

    To overcome this, the team used a reflectarray, which is a reconfigurable mirror arrangement in which a feed antenna radiates energy onto the antenna array, and then those elements receive, phase shift, and radiate the energy (of course, the reciprocity principle works here for receiving as well) (Fig. 2). Its advantages over the conventional phased-array implementation include reduced distribution losses, improved phase synchronization, and no need for complex RF routing.

    Challenge of Beamsteering

    Steering the beam of energy is another problem, as computing and communicating enough bits to control 10,000 antennas at once would dramatically slow the reflectarray’s performance. The researchers overcame this problem by integrating the antenna array directly onto computer chips. Since the phase shifters are so small—just two transistors—they were able to reserve about 99% of the space on the chip for other purposes.

    They used this extra space for memory, so that each antenna can store a library of different phases. Compared to prior reflect/transmit arrays employing discrete phase-shifting devices, this approach doesn’t require any high-speed control signals from external electronics, thanks to an 80-kbit shift-register memory integrated under each antenna.

    “Rather than telling this antenna array in real-time which of the 10,000 antennas needs to steer a beam in a certain direction, you just need to tell it once and then it remembers,” said Monroe. “Then you just dial that up and essentially it pulls the page out of its library. We found out later on that this allows us to think about using this memory to implement algorithms, too, which could further enhance the performance of the antenna array.”

    The reflectarray is implemented as a 14 × 14 tiling of identical 22-nm CMOS die, each designed to talk to copies of itself. Each die has an area of 4.4 mm2 and contains 7 × 7 antenna units. The overall aperture is 58.58 mm2, with about 780 Mb of built-in memory (for control, communication, and some processing).

    The chips are interconnected via low-profile gold bond wires at their edges. Power and phase data are provided from the boundaries of the assembly, and chip-select signals configure each chip to either accept incoming data or pass it onto its neighbors. This allows for high scalability and robustness to potential defective chips with negligible performance degradation.

    Reply
  3. Tomi Engdahl says:

    6G – Explained!
    https://www.youtube.com/watch?v=AvcAovqG5Kk

    We’re just starting to see 5G rollout in 2020, but 6G is already in the works – here’s what you need to know!

    Viewer comments:

    We cannot expect reliability with these types of upgrades. They still haven’t managed to fully roll out 4G so there should be no rush to 6G

    After watching, are you excited or terrified by 6G?

    4G: You can’t leave the city
    5G: You can’t leave the neighborhood
    6G: “Hi I’m your new neighbour”

    7G: everything you think will happen
    8G: everything will happen before you even think about it.

    So by that model, it’ll probably be 8 or 9G that supports full AI with quantum computing being somewhat ubiquitous. By 10G then, in theory we should be able to have instantaneous data transmission on any level, which will probably reach the era of ultra advanced robotics.

    Reply
  4. Tomi Engdahl says:

    Steerable CMOS Sub-THz MIMO Array Combines High Density, Precision, Low Power
    April 13, 2022
    Using a unique high-density array of controllable reflective elements, a team at MIT has devised a highly steerable, 265-GHz phased array with extreme narrow-beam capability.
    https://www.mwrf.com/technologies/systems/article/21238971/electronic-design-steerable-cmos-subthz-mimo-array-combines-high-density-precision-low-power?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220415044&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    Why a reflective array offers benefits compared to active elements in a high-density array.
    How a binary phase-control scheme is used in place of conventional phasing for extremely low power, high-density tiling.
    How the system was tested for 2D and 3D performance.

    There’s lots of interest and activity in the high-gigahertz/low-terahertz part of the electromagnetic spectrum for many reasons: available bandwidth, unique penetration characteristics, short wavelengths and high resolution, and small size, among others. But successfully channeling this energy is a challenge, as most applications require a highly steerable, controllable, very thin beam directed over a wide angle using a large number of elements in the array.

    Now, a team led by recent Ph.D. Nathan Monroe at the Terahertz Integrated Electronics Group at MIT, in conjunction with Intel Corp., has devised and demonstrated a 98- × 98-element (let’s call it 10,000 elements) steerable sub-terahertz MIMO antenna array

    It’s fabricated as a tiled, “stitched together” CMOS device measuring 5.6 × 5.6 cm, using Intel’s 22-nm FinFET process. The final device was tested in a variety of radiation pattern and 2D/3D imaging arrangements and demonstrated a narrow 1° 3-dB beamwidth.

    Reply
  5. Tomi Engdahl says:

    Nykypiireillä ei päästä terabittiluokan mobiiliyhteyksiin
    https://etn.fi/index.php/13-news/13517-nykypiireillae-ei-paeaestae-terabittiluokan-mobiiliyhteyksiin

    Tuleva 6G-tekniikka eri puolilta oli eilen yhtenä seminaariaiheena Teknologia22-messujen XPlanar-lavalla. Oulun yliopiston 6GFlagship-ohjelman professori Aarno Pärssinen ei usko, että nykyisillä puolijohteilla voitaisiin toteuttaa terabittiluokan nettiyhteydet, joita 6G:ssä tavoitellaan.

    Pärssisen mukaan tutkimuksessa on jo päästy testaamaan yli 100 gigabitin langattomia yhteyksiä, mutta vain metrin matkalla. – Siitä on aika pitkä matka siihen, että siirretään se sata megabittiä sekunnissa edes 200-300 metrin päähän.

    5G on toki parantanut kuluttajien käytössä olevien mobiiliyhteyksien tasoa, mutta terabittinopeudet ovat kaukana tulevaisuudessa. – Kuvaavaa on se, että 5G ei riitä poistamaan kaapeleita Varjon laseista, joissa on kaksi 8K-kameraa.

    Pärssisen mukaan ongelma on piin ja CMOS-prosessin yhdistelmä, siis fyysinen. Piigermaniumilla eli SiGellä on testattu 28 nanometrin RF-toteutuksia, joissa kaista ja taajuus kasvaa, mutta sekään ei vastaa toiveisiin. Pärssinen povaakin indium-fosfidista terabittiluokan RF-piirien lupaavinta materiaalia. – Edessä on joka tapauksessa merkittäviä investointeja, jotta ongelma edes ymmärretään.

    Olemme toki tottuneet siihen, että puolijohdetekniikan kehitys tuo laitteisiin automaattisesti lisää suorituskykyä. Tähänkään emme voi tulevaisuudessa tuudittautua. – Piipohjaisten piirien kehitys ei vie automaattisesti 6G- tai terabittiaikakauteen, Pärssinen sanoi.

    Reply
  6. Tomi Engdahl says:

    6G-verkon kehitys etenee – uusi yhteisö Suomeen
    https://www.uusiteknologia.fi/2022/05/11/6g-verkon-kehitys-etenee-uusi-yhteiso-suomeen/

    Suomalaiset mobiiliverkkojen kehittäjät ovat perustaneet uuden yhteenliittymän 6G-kilpailukyvyn edistämiseksi. Uuden 6G Finlandin tavoitteena on tiivistää kotimaista 6G-yhteistyötä ja edistää alan 6G-osaamisen vaikuttavuutta myös ulkomailla.

    Uusi 6G Finland julkistettiin tänään samalla kun pääministeri Sanna Marin kertoi siitä teknologia-aiheisessa seminaarissa Tokiossa Japanin-vierailunsa yhteydessä. Taustalla on Oulun yliopiston laajalti tekemä yhteistyö japanilaisten kanssa matkapuhelinverkkojen kehittämisessä.

    6G Finlandin perustajajäseniä ovat Aalto-yliopisto, BusinessOulu, Helsingin yliopisto, Lappeenrannan-Lahden teknillinen yliopisto, Oulun yliopisto, Tampereen yliopisto, Oulun ammattikorkeakoulu, Nokia Bell Labs, Teknologian tutkimuskeskus VTT sekä Puolustusvoimien tutkimuslaitos.

    6G Finland toimii verkostona, johon jäsenet kutsutaan sisältöperustaisesti. Yhteisön perustamisen myötä 6G Finlandin jäsenet aloittavat myös tiekartta-suunnitelman laatimisen tärkeimmistä 6G-tutkimukseen ja -kehitykseen liittyvistä painopisteistä.

    https://www.6gfinland.fi/

    Reply
  7. Tomi Engdahl says:

    Beyond 5G to wireless optical networks
    Jan. 31, 2022
    With 5G wireless networks spreading around the world, standards writers are turning to optical communications for high wireless bandwidths over short distances.
    https://www.laserfocusworld.com/fiber-optics/article/14223667/beyond-5g-to-wireless-optical-networks?utm_source=LFW+Fiber+Optics&utm_medium=email&utm_campaign=CPS220510004&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    With 5G wireless networks spreading around the world, standards writers are turning to optical communications for high wireless bandwidths over short distances.

    FIGURE 1. Uses of fiber transmission in 5G networks and their exterior connections in datacenters and the global network. Inside the wireless system, fibers connect central offices and local data centers to cell towers and to small 28 GHz cells placed on buildings or poles.

    Wireless communications is a restless field. Although the global 5G network is still taking shape, developers are already planning how to deliver more bandwidth and improve latency in the next-generation 6G network.

    Planners say 6G will be the next big thing, noting it will deliver new wireless services including data links to a multitude of “Things” and augmented reality to people at holographic high resolution.

    3G brought smartphones and the Internet to mobile business users, with 4G expanding them to mobile consumers. He says 5G networks will provide a “tactile Internet” that gives professional users in fields from agriculture to medicine wireless real-time control of real and virtual objects in the Internet of Things.

    Fettweis also notes that “6G must provide an infrastructure to enable remote controlled robotic solutions for everyone, the Personal Tactile Network. From 2030 on, with the launch of 6G, the old dream of mankind of robotic helpers easing our life will therefore become reality.” It’s a big, broad vision that seeks to realize concepts including augmented reality as well as personal robotic agents. Achieving that goal will require new technology that can deliver enormous transmission capacity, provide extensive interconnectability, and achieve nearly instantaneous latency.

    According to Michail Matthaiou, a professor at Queen’s University (Belfast, UK), the success of 5G can be attributed to the use of massive multiple-input multiple-output (MIMO) technology in the microwave band. Their main concern is the physical layer of mobile networks, the hardware that transports signals. Other layers of communication systems perform other functions, such as delivering voice, video, or data inputs into the system, converting those input signals into a suitable format for transmission, and multiplexing signals from various sources into a single data stream for transmission through the physical layer. Optics are part of the physical layer. Optical transmitters generate light signals that travel through fibers or the air for free-space communications. Radio and microwave signals from antennas travel wirelessly through the air. Electronic transmitters generate electrical currents that travel short distances through wires.

    Fiber optics play important roles in the physical layer of 5G mobile networks (see Fig. 1). They provide high-capacity backbone transport for the global telecommunication system and between datacenters. They also provide backhaul between regional distribution nodes and the cellular towers that distribute wireless signals at radio frequencies. Passive optical networks can transmit radio signals in the 28 GHz band used by 5G networks to transmit from local antennas distributing high-frequency signals serving small “picocells.”

    Challenges in scaling to 6G

    Optics play a major role in scaling the physical layer of mobile networks to meet the goals of 6G networks. Matthaiou says this requires three major technological advances: transmitting signals at frequencies from the 28 GHz band used in 5G ranging up to the optical band, developing intelligent reconfigurable surfaces for antenna systems, and replacing conventional fixed cellular networks with cell-free networks based on massive multiple-input multiple-output (mMIMO) networks.

    The three major bands envisioned for 6G are millimeter waves at 30 to 300 GHz, terahertz at 300 GHz to 3 THz, and the optical band, which includes much of the infrared (IR), all of the visible, and the long-wave end of the ultraviolet. Atmospheric absorption is a well-known problem for most of the millimeter-wave band, with most air attenuation ranging from 2 to 10,000 dB/km at 300 GHz to 10 THz.2 At least in the near term, that high attenuation limits transmission to short distances in most of the millimeter and terahertz bands. Obstructions such as foliage or walls can also block transmission.

    The goal of intelligent reconfigurable surfaces is to revolutionize the structure of the antennas transmitting and receiving wireless signals.

    Optical wireless communications

    Fiber-optic cables have long provided backbone transport and backhaul for wireless networks, but wireless optics were not used until 4G systems were deployed. However, the high frequencies of light waves make optical transmission more attractive for bandwidth-hungry 6G wireless applications.

    Microwave frequencies limit the attainable bandwidth of wireless networks. The new WiFi6 wireless standard manages to achieve data rates to 9.6 Gbit/s by operating in parts of the microwave spectrum from 1 to 7.125 GHz. Optical wavelengths, with frequencies of hundreds of terahertz, promise much higher data rates for wireless applications.

    The most mature technology is Li-Fi (light fidelity) proposed by Harald Haas, of the University of Strathclyde (Glasgow, UK), to cover wireless optical systems that use visible and IR light to provide two-way multiuser communications.3 Optical wireless generally works best with a line of sight between the transmitter and receiver, but it can work if light is spread and reflected diffusely. Non-line-of-sight operation is possible, but may require special technology and signal processing. Walls, doors, foliage, fog, precipitation, and other obstructions can block or strongly attenuate light, so in practice most wireless optical links cover only short to medium distances.4 Whether that limit is a bug or a feature depends on the application. Containing signals within a room or building can provide security in many situations, but could be a problem in a network serving multiple rooms or structures, or reaching people outside of the building.

    LED sources are attractive for short and medium wireless communication because they can disperse light across wide angles to give desirable multipath diversity on short links, and their low power avoids the risk of eye damage. One early appeal of the Li-Fi system was the idea of modulating overhead LED light bulbs with signals that would spread through a room like radio waves. The optical illumination could provide the downlink from server to users, with individual user devices equipped with radio uplinks.

    Kyocera SLD Laser (Goleta, CA) has demonstrated a new type of laser-based surface-mount device (SMD) Li-Fi source in which two gallium-nitride (GaN) diode lasers illuminate phosphors to generate white light (see Fig. 2). “The blue or violet laser sources illuminate the phosphor, which converts some energy to yellow for white light. The laser light undergoes Lambertian scattering, yielding a mixture of about 20% blue and 80% yellow” in the output of their LaserLight Li-Fi, says Paul Rudy of Kyocera.

    For CES, Kyocera assembled an array of 10 separate sources generated different wavelengths by using blue and violet GaN lasers with phosphors to generate visible light, and gallium-arsenide diode lasers to generate IR light that was also diffused to spread the light. Each source was modulated at 10 Gbit/s, and wavelength-division multiplexing combined the 10 sources to deliver a 100 Gbit/s signal.

    “The data rate is what’s very important,” says Haas, who worked with Kyocera on the demonstration. “You can use it in daylight, with infrared and visible light. It works across different scenarios and can be combined with sensing.” That’s important because 6G will combine sensing, communications, and computing, he adds. “Maybe 20 years from now, wireless will be optical rather than radio.”

    For now, Rudy says Li-Fi is attracting interest from users concerned that radio wireless signals could interfere with sensitive medical or other equipment or could leak secrets from secure facilities. The aviation industry also is interested because it worries that noise from radio bands the FCC recently opened to wireless communication could interfere with sensitive navigation equipment.

    Latency and transport networks

    Reducing network latency to submillisecond levels is high on 6G wish lists because it is too short for humans to perceive, which is crucial for use in applications such as augmented reality and robotic telesurgery. 4G networks have latency of 30 to 70 ms, with a theoretical lower limit of 10 ms. Early 5G networks have latency as low as 5 ms, with some hoping to reach 1 ms in the future.5

    According to Harsh Tataria of Lund University (Lund, Sweden), in a study published in Proceedings of the IEEE, achieving submillisecond latency will require “a complete rethink of the network design, where the present transport networks will begin to disappear and be virtualized over existing fiber, as well as be isolated using modern software-defined networking.” Shortcuts to reduce latency will involve “the reduction or removal of the transport network fiber infrastructure.” Yet even with all wireless links, achieving submillisecond latency would require limiting network reach to the order of a hundred kilometers.

    Outlook

    We don’t currently know what 6G standards will specify beyond a promise of more bandwidth. Nor can we be sure that 6G will make holographic-quality augmented reality the next big thing.

    Wireless data rates need to increase significantly for 6G to deliver applications such as high-resolution virtual reality in the future.

    Reply
  8. Tomi Engdahl says:

    Suomen 6G-kehittäjät koottiin yhteen
    https://etn.fi/index.php/13-news/13554-suomen-6g-kehittaejaet-koottiin-yhteen

    Merkittävimmät suomalaiset tietoliikennealan tutkimus- ja kehitystoimijat ovat perustaneet keskinäisen yhteenliittymän Suomen 6G-kilpailukyvyn edistämiseksi. 6G Finlandin tavoitteena on tiivistää Suomen sisäistä 6G-yhteistyötä ja edistää suomalaisen 6G-osaamisen kansainvälistä vaikuttavuutta.

    6G Finlandin perustamisesta kertoi myös pääministeri Sanna Marin teknologia-aiheisessa seminaarissa Tokiossa Japanin-vierailunsa yhteydessä. 6G Finlandin perustajajäseniä ovat Aalto-yliopisto, BusinessOulu, Helsingin yliopisto, Lappeenrannan-Lahden teknillinen yliopisto, Oulun yliopisto, Tampereen yliopisto, Oulun ammattikorkeakoulu, Nokia Bell Labs, Teknologian tutkimuskeskus VTT sekä Puolustusvoimien tutkimuslaitos.

    Reply
  9. Tomi Engdahl says:

    Methane-Based Laser Source Creates 120 Distinct THz Frequencies
    May 9, 2022
    By using energy transitions of methyl fluoride molecules in a quantum laser, researchers have devised a system that creates over 120 tunable frequencies across the terahertz band.
    https://www.electronicdesign.com/technologies/analog/article/21241305/electronic-design-methanebased-laser-source-creates-120-distinct-thz-frequencies?utm_source=EG+ED+Analog+%26+Power+Source&utm_medium=email&utm_campaign=CPS220510015&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    How lasers are used as terahertz frequency sources.
    The impact of the transition from nitrous oxide to methyl fluoride as the lasing gas.
    Results achieved by the researchers.

    Interest in the terahertz band—likely the next region for wireless spectrum opportunity as well as specialized sensing—continues, with significant research at the university level. However, despite decades of research, no frequency tunable sources span the terahertz gap between 0.3 to 3 THz.

    But there’s genuine progress: A team at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), working in collaboration with the DEVCOM Army Research Lab and DRS Daylight Solutions, demonstrated continuous-wave lasing with more than 120 discrete transitions spanning the range from 0.25 to 1.3 THz. The work builds on the team’s previous prototype that proved terahertz frequency sources could be compact, room temperature, and widely tunable by combing a quantum cascade laser pump with a nitrous oxide (laughing gas) molecular laser.1

    How Does It Work?

    The molecular interaction, quantum-level physics, and associated analysis are daunting and intense, and fully explained in the published paper; the hardware itself is complicated as well (Fig. 1). The THz cavity is a 50-cm copper pipe with a 4.8-mm internal diameter. A flat mirror with a centered 1-mm-diameter pinhole was used as the output coupler. The cavity resonance frequency was tuned by changing the tuning mirror position to adjust the cavity length.

    The performance of the laser cavity is determined by its geometry, cavity quality factor, loss factor of pump power inside the cavity, and the terahertz losses in the output coupler. The optimal cavity dimensions, operating pressure, and more accurate output powers are calculated by performing extensive molecular dynamics simulations.

    Reply
  10. Tomi Engdahl says:

    Researchers have found a way to eavesdrop on 6G wireless signals even before the technology is broadly deployed — by building a tunable metasurface in five minutes for well under a dollar using just standard paper, a cheap printer, a foil transfer sheet, and a laminator.

    A Simple Printed and Laminated Metasurface, Costing Cents, Opens 6G Comms to Eavesdropping Attacks
    https://www.hackster.io/news/a-simple-printed-and-laminated-metasurface-costing-cents-opens-6g-comms-to-eavesdropping-attacks-e3534b27829c

    Using an office printer, paper, foil transfer, and a hot laminator, this “Metasurface-in-the-Middle” can be built for pennies.

    Reply
  11. Tomi Engdahl says:

    Nokian Lundmark: 6G vie älypuhelimet eläkkeelle 2030
    https://etn.fi/index.php/13-news/13649-nokian-lundmark-6g-vie-aelypuhelimet-elaekkeelle-2030

    Älypuhelin on tällä hetkellä tärkein laitteemme. Sen avulla suomalaiset olivat eilen mukana Leijonien maailmanmestaruuden juhlinnassa. Mutta vuonna 2030 älypuhelin ei enää ole tärkein rajapintamme verkkoon, uskoo Nokian pääjohtaja Pekka Lundmark.

    Lundmark esitti World Economic Forumissa, että 6G-verkot tulevat käyttöön noin vuonna 2030. Tuolloin teollisesta maailmasta on tullut pääosin virtuaalinen. Palveluja käytetään yhä useammin muilla kuin älypuhelimilla.

    Ennuste on rohkea. Se tarkoittaisi, että meillä on kahdeksan vuotta aikaa nauttia älypuhelimista. Jos älypuhelinten aikakauden katsotaan alkaneen ensimmäisestä iPhonesta vuonna 2007 – moni nokialainen on varmasti sitä mieltä, että aikakausi alkoi jo aikaisemmin – jää älypuhelimen valtakausi vain reilun 20 vuoden mittaiseksi.

    Reply
  12. Tomi Engdahl says:

    Nokia mukaan japanilaiseen 6G-maailmaan
    https://www.uusiteknologia.fi/2022/06/06/nokia-mukaan-japanilaiseen-6g-maailmaan/

    Nokia kertoi tänään, että aloittavansa 6G-verkkojen kehitysyhteistyön japanilaisten teleoperaattori Docomon ja NTT:n kanssa. Tarkoitus on määritellä myös keskeisiä uusia teknologioita, joita tarvitaan tulevaisuuden 6G-verkkojen toiminnassa. Mukana on video myös Nokian 6G-visioista ja tarvittavista tekniikoista.

    Nokia keskittyy japanilaistahojen kanssa tekoälynpohjaisen ilmarajapinna ja alle terahertsitaajuuksien radioyhteyksiin. Yritykset pyrkivät osoittaa, että suuriin datanopeuden voidaan päästä 140 gigahertsin taajuuksilla säteittäisittäin. Tarkoitus on demota tekniikoita vielä tämän vuoden aikana Japanin lisäksi Nokian Saksan Stuttgartin toimipisteessä.

    Nokia kertoo tiedotteeessa , että tuleva 6G ei rakennu vain olemassa oleville teknologioille ja järjestelmille, vaan laajentaa ja muuttaa verkon mahdollisuuksia, kuten yhtiön toimitusjohtaja Pekka Lundmark kertoi äskettäin Davosin päättäjien kokouksessa. Hänen viestinsä saikin laajasti julkisuutta maailman yleismedioissa. Suomessa esimerkiksi MTV3 haastatteli Pekka Lundmarkia Extra-ohjelmassaan.

    Reply
  13. Tomi Engdahl says:

    What is 6G?
    https://www.bell-labs.com/research-innovation/what-is-6g/?utm_source=ebookpdf&utm_medium=link&utm_campaign=6G_ebook&utm_term=6G&utm_content=textlink

    6G will not only build on existing technologies, it will radically transform what a network can do. We believe it will liberate human potential, inclusively and sustainably.

    Nokia’s vision for the 6G era
    https://www.nokia.com/about-us/newsroom/articles/nokias-vision-for-the-6g-era/

    magine a world that fuses the digital, physical and human domains to create revolutionary immersive experiences. The coming together of machines, ambient data, intelligent knowledge systems and robust computation capabilities that redefine how we live, work and take care of our planet. This is exactly what we will experience with the arrival of 6G from 2030.
    thumbnail

    Hear from Peter Vetter, President Bell Labs Core Research about Nokia’s vision for the 6G era

    Reply
  14. Tomi Engdahl says:

    Nokia aloittaa 6G-tutkimuksen jo tänä vuonna
    https://etn.fi/index.php/13-news/13681-nokia-aloittaa-6g-tutkimuksen-jo-taenae-vuonna

    Nokia ilmoitti tänään, että se tekee yhteistyötä DOCOMOn ja NTT:n kanssa määritelläkseen ja kehittääkseen yhdessä keskeisiä teknologioita kohti 6G-verkkoja. Suunnitelmana on rakentaa ympäristöt kokeiluja ja demonstraatioita varten DOCOMOn ja NTT:n tiloihin Japanissa sekä Nokian tiloihin Stuttgartiin Saksaan ja aloittaa haluttujen testien ja mittausten tekeminen jo tänä vuonna.

    Yritysten yhteistyössä keskitytään kahden uuden 6G-teknologian osoittamiseen. Toinen on tekoälyn natiivin ilmarajapinnan kehittäminen ja toinen radioyhteys korkeammilla taajuuksilla, ”terahertsialueen alapuolella”, kuten määrittely kuuluu.

    Yksi tavoitteista on osoittaa, että suuren datanopeuden säteen muotoinen linkki voidaan saavuttaa korkealla taajuuskaistalla 140 gigahertsissä. Tämä on selvästi korkeammalla kuin mitä esimerkiksi 5G:n millimetritaajuuksien alueella tavoitellaan.

    Reply
  15. Tomi Engdahl says:

    170-GHz/220-GHz Broadband VNA Built for On-Wafer Characterization
    May 26, 2022
    Keysight’s VNA solution, developed in collaboration with three other companies, efficiently characterizes on-wafer devices and circuits, speeding deployment of 5G/6G MMICs.
    https://www.mwrf.com/technologies/test-measurement/article/21242743/microwaves-rf-keysight-and-three-collaborators-forge-170ghz220ghz-broadband-vna-for-onwafer-characterization?utm_source=RF+MWRF+Today&utm_medium=email&utm_campaign=CPS220527031&o_eid=7211D2691390C9R&rdx.ident%5Bpull%5D=omeda%7C7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Keysight Technologies has teamed with FormFactor, Dominion MicroProbes (DMPI), and Virginia Diodes to create a 170-GHz/220-GHz broadband vector-network-analysis (VNA) package that shortens design and verification cycles for 5G and emerging 6G applications.

    Reply
  16. Tomi Engdahl says:

    6G tärkeää – Nokia jakoi Oulun yliopistolle lisää tutkimusrahaa
    https://www.uusiteknologia.fi/2022/06/22/6g-tarkeaa-nokia-jakoi-oulun-yliopistolle-lisaa-tutkimusrahaa/

    Nokia osallistuu Oulun yliopiston meneillään olevaan varainhankintakampanjaan 250 000 euron lahjoituksella yliopiston tekniikan alan tutkimukseen. Oulun ohella Nokia lahjoittaa Aalto ja Helsingin sekä Tampereen yliopistoille yhteensä 1,1 miljoonaa euroa teknologiaosaamisen ja -tutkimuksen kehittämiseen.

    6G-tutkimuksen lisäksi Nokia on Oulun yliopistolle tärkeä strateginen kumppani radioteknologiaan liittyvässä tutkimuksessa ja uusien innovaatioiden kehittämisessä. Niillä on jo pitkä yhteinen historia matkapuhelinten ja tietoliikenneverkkojen kehityksessä. Nokia on ollut myös aina merkittävä Oulun yliopiston alumnien ja opiskelijoiden työnantaja. Nokia haluaa panostaa alan huippututkimukseen ja uusien kykyjen kouluttautumiseen.

    Tällä hetkellä Nokian ja Oulun yliopiston yhteistyön keskiössä on erityisesti yhteistyö maailman ensimmäisessä laajassa 6G-tutkimuksesssa, Suomen Akatemian rahoittamassa 6G Flagship -tutkimuskokonaisuudessa. Suomi on kansainvälisesti 6G-tutkimuksen ja -kehityksen kärkimaita.

    Reply
  17. Tomi Engdahl says:

    Nokia to lead German 6G lighthouse project

    Press Release

    Nokia is the overall leader for 6G-ANNA, a German national-funded 6G lighthouse project
    6G-ANNA will provide essential technologies to unleash and augment human potential.

    https://www.nokia.com/about-us/news/releases/2022/07/11/nokia-to-lead-german-6g-lighthouse-project/

    Reply
  18. Tomi Engdahl says:

    Rohde & Schwarz participates in 6G-ANNA, a lighthouse project to advance 6G in Germany
    https://www.rohde-schwarz.com/fi/about/news-press/all-news/rohde-schwarz-participates-in-6g-anna-a-lighthouse-project-to-advance-6g-in-germany-press-release-detailpage_229356-1250868.html

    The three-year 6G-ANNA lighthouse project was initiated by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) and is led by Nokia. With the combined effort of the 29 participating companies and research institutions, the consortium aims to advance the development, standardization and implementation of the upcoming new generation of mobile communications. Rohde & Schwarz is contributing to the project by leveraging its already comprehensive research into 6G and related technologies.

    Reply
  19. Tomi Engdahl says:

    Nokia to lead German 6G lighthouse project
    https://www.nokia.com/about-us/news/releases/2022/07/11/nokia-to-lead-german-6g-lighthouse-project/

    Press Release

    Nokia is the overall leader for 6G-ANNA, a German national-funded 6G lighthouse project
    6G-ANNA will provide essential technologies to unleash and augment human potential.

    Rohde & Schwarz participates in 6G-ANNA, a lighthouse project to advance 6G in Germany
    https://www.nokia.com/about-us/news/releases/2022/07/28/nokia-radio-technology-to-enable-ast-spacemobiles-direct-to-cell-phone-connectivity-from-space/

    Reply
  20. Tomi Engdahl says:

    White paper: Fundamentals of THz technology for 6G
    https://www.rohde-schwarz.com/fi/solutions/test-and-measurement/wireless-communication/cellular-standards/6g/white-paper-fundamentals-of-thz-technology-for-6g-by-rohde-schwarz-registration_255934.html?cid=010_com_eml-nl_141_mwrf_22-09_int__wp-thz_eblast_text-link____MM-1079390

    The prospect of offering large contiguous frequency bands to meet the demand for extremely high data transfer rates in the Tbit/s range is making terahertz (THz) waves a key research area for the next generation of wireless communications (6G).

    Webinar: THz communication – a key enabler for beyond 5G?
    https://www.rohde-schwarz.com/fi/knowledge-center/webinars/webinar-thz-communication-register_254482.html?cid=010_com_eml-nl_141_mwrf_22-09_int__webinar-thz_eblast_text-link____MM-1079390

    Sub-terahertz and terahertz (THz) waves, ranging from 0.1 THz to 10 THz, fall in the spectral region between microwave and optical waves. The prospect of enabling transfer rates in the terabit/sec range make them a key research area of 6G mobile communication.

    Sub-THz technologies require highly integrated frontends, including array antennas, that necessitate advanced over-the-air testing methods with a frequency range up to 300 GHz. To fully exploit the potential of this frequency range for future wireless communications, it is also crucial to understand the propagation characteristics by performing channel measurements.

    This requires an interdisciplinary approach between high-frequency semiconductor technology for RF electronics as well as alternative approaches using photonic technologies. The THz region also shows great potential for other application areas, from imaging to spectroscopy and sensing.

    Reply
  21. Tomi Engdahl says:

    Measure noise figure above 110 GHz
    https://www.rohde-schwarz.com/fi/applications/measure-noise-figure-above-110-ghz-application-card_56279-454785.html?cid=010_com_eml-nl_141_mwrf_22-09_int__measure-noise-figure_eblast_text-link____MM-1079390

    Rohde & Schwarz signal and spectrum analyzers equipped with the R&S®FSx-K30 option form the basis of a solution to accurately measure the noise figure in the millimeterwave frequency range using the Y-factor method.

    With recent enhancements in semiconductor technology, the microwave frequency range beyond 110 GHz becomes more and more attractive, especially for millimeterwave radar and imaging applications. However, usually the signal-to-noise ratio in a receiver becomes worse at higher frequency ranges. When developing millimeterwave applications, it is therefore crucial to measure the noise figure of LNAs (low noise amplifiers) or the entire receive path in order to increase sensitivity.

    The LNA’s noise figure and gain define the overall achievable signal-to-noise ratio. Both parameters need to be measured in order to design the system properly and improve the resolution of the radar and microwave imaging applications or to enhance data throughput for communications applications.

    A Rohde&Schwarz signal and spectrum analyzer, such as the R&S®FSW, equipped with the R&S®FSx-K30 noise figure measurements option is ideal to accurately measure and analyze noise figure and gain even in the millimeterwave range. An external harmonic mixer such as the R&S®FS‑Z170 extends the analyzer’s frequency range up to 170 GHz

    Reply
  22. Tomi Engdahl says:

    6G:llä lähetettiin dataa 320 metrin yli
    https://etn.fi/index.php/13-news/14041-6g-llae-laehetettiin-dataa-320-metrin-yli

    Korealainen LG Electronics on onnistunut yhdessä saksalaisen Fraunhoferin tutkimuskeskuksen Heinrich Herttz Instituutin kanssa testaamaan menestyksekkäästi terahertsialueen 6G-datan langatonta lähetystä ja vastaanottoa. Käytössä oli taajuusalue 155-175 gigahertsiä ja data siirtyi 320 metrin matkan.

    Virstanpylväs saavutettiin 7. syyskuuta Fraunhoferin tiloissa Berliinissä. yse on merkittävästä läpimurrosta, sillä millimetriaaltojen tapaan terahertsialueen yhteyksien arvioidaan olevan kaupunkialueella noin 250 metriä. Viime vuoden elokuussa LG osoitti pystyvänsä siirtämään 6G THz -dataa 100 metrin etäisyydelle ulkona.

    Terahertsitaajuuksilla 6G-yhteuden kantana on suhteellisen lyhyt ja linkissä voidaan kokea tehohäviöitä lähetyksestä vastaanottoon.

    Demossa käytetyn monikanavaisen tehovahvistimen teho on yli 20 dBm, mikä on yli 5 dBm enemmän kuin edellisessä kokeilussa. Uudet tekniikat on integroitu LG:n uusimpaan moduulisuunnitteluun, ja niitä aiotaan käyttää tulevissa 6G-mikropiirien valmistuksessa.

    LG ei kertonut demon datanopeuksia

    Keskustelujen 6G-verkkojen standardoinnista odotetaan alkavan vuoden 2025 tienoilla, ja teknologian kaupallistamisen odotetaan tapahtuvan vuonna 2029. Langattomiin 5G-verkkoihin verrattuna 6G tarjoaa paljon paremmat tiedonsiirtonopeudet pienemmällä viiveellä ja paremmalla luotettavuudella.
    back to top
    MORE NEWS
    Turvasertifiointi valmiina FPGA-piireille

    Jos järjestelmää käytetään erittäin luotettavissa kaupallisissa ilmailu-, avaruus-, puolustus-, auto- ja teollisuussovelluksissa, niiltä edellytetään toiminnallisen turvallisuuden IEC 61508 Safety Integrity Level (SIL) 3 -sertifiointia. Mircochip tarjoaa nyt tämän seritfioinnin valmiina pakettina kahdelle FPGA-piiriperheelleen.
    ▼ ILMOITUS ▼
    6G:llä lähetettiin dataa 320 metrin yli

    Korealainen LG Electronics on onnistunut yhdessä saksalaisen Fraunhoferin tutkimuskeskuksen Heinrich Herttz Instituutin kanssa testaamaan menestyksekkäästi terahertsialueen 6G-datan langatonta lähetystä ja vastaanottoa. Käytössä oli taajuusalue 155-175 gigahertsiä ja data siirtyi 320 metrin matkan.
    Autoihin menee jo joka kolmas mikro-ohjain

    Mikro-ohjaimia myydään vuonna 2026 jo 27 miljardilla dollarilla, tietää tutkimuslaitos Yple Developpement kertoa. Useampi kuin joka kolmas näistä menee autoihin eli osaksi auton kasvavaa elektroniikkaa.
    ▼ ILMOITUS ▼
    Sähköauton suurin vika on tässä

    Reuters järjesti kesällä Automotive Europe 2022 -tapahtuman, jossa ruodittiin autoteollisuuden suurimpia haasteita. Konferenssin anti on nyt koottu yhteen. Sähköautojen suurimmaksi viaksi valmistajat näkevät sen, että se on tuotteena keskeneräinen. Silti autoja ryhdyttiin työntämään markkinoille ja kuluttajille.
    5G-yhteydet kaksinkertaistuvat joka vuosi

    5G-yhteyksien määrä kasvoi 813 miljoonaan vuoden toisella neljänneksellä. 5G Americasin mukaan kasvua tuli 112 prosenttia vuodetakaisesta. Jatkossakin sama tahti jatkuu: 5G-yhteyksien määrä kaksinkertaistuu joka vuosi.
    ▼ ILMOITUS ▼
    Autoihin tulee gigabitin optinen verkko

    Autojen sisäisissä verkoissa datan nopeus- ja kapasiteettivaatimukset kasvavat koko ajan. Perinteinen CAN ei jatkossa enää riitä ja sen tilalle ovat tulossa nopeammat Ethernet- ja kuituratkaisut
    Datalta vaaditaan nyt suvereniteettia

    IDC:n tietoturvatutkimuksissa datan suojaaminen on edelleen yritysten ykkösprioriteetti ja yksityisyys ja GDPR tulevat heti toisena. Niiden perään on noussut datan suvereniteetti, kertoi IDC:n Euroopan tutkimusjohtaja Joel Stradling yhtiönsä tietoturvatapahtumassa Helsingissä.
    ▼ ILMOITUS ▼
    Suomalainen hiilinanoputki aistii kosketuksia uudessa maasturissa

    Canatu tunnetaan Teknillisessä korkeakoulussa kehitetyn nanonupputekniikan kaupallistajana ja kehittäjänä. Nyt yhtiö kertoo aloittaneensa uuden, läpinäkyvän, muotoiltavan 3D-kosketusanturin massatuotannon.
    Avoimeen lähdekoodiin jää usein heikkouksia

    Avoimen lähdekoodin ohjelmistot ovat tärkeitä tekijöitä pilvipohjaisissa sovelluksissa, sillä ne mahdollistavat ohjelmistokehittäjille vapauden reagoida puutteisiin ja virheisiin nopeasti ja tehokkaasti. Avoimen lähdekoodin ohjelmistoissa on kuitenkin omanlaisia turvallisuusriskejä, selviää Palo Alto Networksin Unit 42 -tutkimusyksikön laatimasta vuoden 2021 toisen puoliskon uhkaraportista.
    ▼ ILMOITUS ▼
    Electronicassa odottaa vahva seminaaritarjonta

    Marraskuun toisella viikolla elektroniikan ammattilaiset kokoontuvat omiin olympialaisiinsa, kun Münchenissä järjestetään Electronica-messut. Näyttely kattaa 14 messuhallia, mutta sen rinnalla tapahtuma panostaa erittäin vahvaan seminaarien tarjontaan.

    Reply
  23. Tomi Engdahl says:

    Strange Topological Physics Could Help Enable 6G Tech Topological chips can enable on-chip data rates of 160 gigabits per second
    https://spectrum.ieee.org/photonic-topological-insulators-2658324693?share_id=7241788&socialux=facebook&utm_campaign=RebelMouse&utm_content=IEEE+Spectrum&utm_medium=social&utm_source=facebook#toggle-gdpr

    A new silicon device can help control terahertz communications on chips.

    The next generation of wireless communications, 6G, will likely rely on terahertz rays to help reach unprecedented speeds. Now research suggests that unusual topological physics may help control terahertz radiation on chips for 6G applications.

    Terahertz waves (also called submillimeter radiation or far-infrared light) fall between optical waves and microwaves on the electromagnetic spectrum. Ranging in frequency from 0.1 to 10 terahertz, terahertz waves could be key to future 6G wireless networks.

    “Terahertz technologies are the critical enabler for developing 6G devices, products, services, and ubiquitous connectivity that will redefine how we create, consume and deliver data,”

    The vision for 6G includes blazingly fast speeds of terabits (trillions of bits) per second to support applications such as autonomous vehicles, augmented reality, and immersive telepresence. These goals require on-chip communication technologies providing data rates beyond 100 gigabits (billions of bits) per second.

    However, existing terahertz on-chip communication devices suffer from signal scattering, crosstalk—that is, signals leaking between channels—and the inability to actively tune across multiple channels. These problems have limited these devices to data transmission speeds of a few dozen gigabits per second.

    Using insights from topology, researchers developed the first electronic topological insulators in 2007.

    The new on-chip topological waveguide could support a single-channel broadband communication link with data rates of up to 160 Gbps. The researchers showed they could use light to actively turn the chip on and off.

    The scientists also coupled this device to an on-chip topological demultiplexer that enabled simultaneous multiple independent signals in the communications network. They found they could achieve two perfectly isolated data signals without any crosstalk. One channel permitted real-time uncompressed high-definition video streaming at 1.5 Gbps, while the other supported data transmission at 40 Gbps.

    Reply
  24. Tomi Engdahl says:

    Coming soon: R&S®FE170ST & R&S®FE170SR frontends
    Be equipped for early sub-THz and 6G research activities
    https://www.rohde-schwarz.com/fi/products/test-and-measurement/signal-generators/fe170st-sr_256041.html

    Reply
  25. Tomi Engdahl says:

    Nokia vie Euroopan 6G-tutkimuksen kohti standardeja
    https://etn.fi/index.php/13-news/14095-nokia-vie-euroopan-6g-tutkimuksen-kohti-standardeja

    Euroopan komissio on ilmoittanut eurooppalaisen 6G-lippulaivahankkeen toisen vaiheen luomisesta. Hexa-X-II:n työtä johtaa Nokia. Tavoitteena on jo lähivuosina päästä järjestelmätason 6G-työhön sekä samalla työstää tekniikkaa tulevan 6G-standardin pohjaksi.

    Hexa-X:n eli 6G-hankkeen ensimmäistä vaihetta jatkava Hexa-X laajentaa hankkeessa mukana olevien kumppanien luettelon 44 organisaatioon. Hanke on saanut Euroopan komission rahoituksen osana Smart Network and Services Joint Undertakingin (SNS-JU) ensimmäistä hakua. Tämä on seuraava merkittävä askel kohti keskeisten alan sidosryhmien yhdistämistä Euroopassa. Sekä Hexa-X:n että Hexa-X-II:n tavoitteena on vakiinnuttaa Eurooppa 6G:n johtajaksi.

    Ericsson ottaa vastuulleen Hexa-X-II:n teknisen johtajuuden. Orange, TIM SpA, TU Dresden, Oulun yliopisto, IMEC ja Atos auttavat koordinoimaan erilaisia ​​työpaketteja, kuten radion evoluutio ja innovaatio, tulevaisuuden laitteet ja joustava infrastruktuuri, älykäs verkonhallinta ja arvot sekä vaatimukset ja ekosysteemi.

    Kuluttajien kannalta 6G-työ on 5G:n evoluutiota. Sen ensimmäisessä vaiheessa käyttöön tulee 5G-Advanced, jonka perustaa Nokia on jo ollut luomassa tulevissa 3GPP-julkaisuissa 18 ja 19. Nyky-5G:een verrattuna Advanced-versio parantaa esimerkiksi XR- eli Mixed Reality -sovellusten mahdollisuuksia, erittäin tarkkaa paikannusta, verkkojen peittoa ja radioverkkojen ohjaamista tekoälyn avulla.

    Hexa-X-II-projektin tavoitteena on käynnistyä 1.1.2023 ja sen suunniteltu kesto on kaksi ja puoli vuotta.

    Reply
  26. Tomi Engdahl says:

    Nokia to lead the next phase of Europe’s 6G flagship project
    https://www.nokia.com/about-us/news/releases/2022/10/07/nokia-to-lead-the-next-phase-of-europes-6g-flagship-project/

    Press Release

    Nokia to lead the next phase of Europe’s 6G flagship project

    European Commission has announced the creation of Hexa-X-II, the second phase of the European 6G flagship initiative.
    Nokia will be the project leader for Hexa-X-II, following its leadership of the first Hexa-X project.
    While Hexa-X focuses on a common European 6G vision and possible use cases and technology enablers, Hexa-X-II will create a pre-standardized platform and overall system view.
    Nokia leading both Hexa-X and Hexa-X-II demonstrates its dedication to collaboration in Europe as it works with major ecosystem players to shape the future of communications.

    Reply
  27. Tomi Engdahl says:

    Metaversumi ei tapa älypuhelinta, mutta 6G tekee sen
    https://etn.fi/index.php/13-news/14225-metaversumi-ei-tapa-aelypuhelinta-mutta-6g-tekee-sen

    Nokian teknologiajohtaja Nishant Batra ennusti vähän aikaa sitten, että virtuaaliympäristö – tai metaversumi, jos halutaan sitä nimeä käyttää – korvaa älypuhelimemme vuoteen 2030 mennessä. Nyt tutkimuslaitos GlobalData on sekin ennustanut älypuhelimen kuolemaa. Syyllinen on kuitenkin 6G-tekniikka.

    GlobalDatan tutkimuspäällikkö Jerry Caron kertoo podcastissaan, että 6G:ssä tulee ennen kaikkea olemaan kysymys siitä, että verkkoyhteys on käytössä kaikkialla. Riittävällä datanopeudella ja alhaisella latenssilla.

    GlobalDatan analyytikoiden mukaan älypuhelin ei enää ole kovin keskeisessä roolissa 6G-maailmassa. Yhtiö arvioi, että älypuhelin nykyisenlaisena laitteena tulee turhaksi vuoteen 2030 mennessä.

    Podcastin voi kuunnella täällä.

    Life in a 6G world: when will we see the death of the smartphone?
    https://www.youtube.com/watch?v=X2LIdWmhfC8

    Reply
  28. Tomi Engdahl says:

    6G: An Automotive Perspective
    Oct. 6, 2022
    It’s anticipated that 6G will bring greater car safety and a host of new automotive services thanks to its potentially large bandwidth and high-data-rate connectivity to support data- and ML-driven applications.
    https://www.electronicdesign.com/markets/automotive/article/21252330/nxp-semiconductors-6g-an-automotive-perspective?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_campaign=CPS221103034&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    How 6G is impacting the automotive industry.
    6G features that present new opportunities for vehicle safety and services.

    Today’s connected world is all about interacting through, with, and among an ever-increasing range of smart devices. The global hunger for more bandwidth and lower latency has driven the emergence of the first wave of 5G and Wi-Fi 6/7 connectivity. Researchers are looking at what’s next with development underway on the second and third waves of 5G systems.

    This article looks at one specific use case: automotive. The automotive industry is innovating rapidly through electrification and automation, coinciding with 5G evolution and 6G research in the communications industry. System and product targets across both sectors are aligned beyond the well-understood performance and latency metrics, with situational awareness, safety, and security being solid examples.

    Vehicle-to-Cloud

    By providing ubiquitous connectivity, 5G is enabling the vehicle itself to become a connected entity. As cars become increasingly connected and software-oriented, vehicle-to-cloud (V2C) connectivity is enabling a greater range of operational and security functions.

    Automotive OEMs can collect and store data, such as odometer readings, charge status, and mechanical information, to inform the owner of their vehicle status and provide automated alerts when maintenance is due. Software updates can be applied over the air (OTA) whenever a new feature or security patch is ready, removing the need for a visit to the garage.

    Vehicle-to-Everything (V2X) Communications

    The concept of V2X connectivity is about enabling vehicles to communicate with everything around them: other vehicles, infrastructure, traffic lights, parking spaces, and even other road users such as cyclists and pedestrians. With V2X, information from vehicle sensors can be shared with other entities via (wireless) communication links.

    The aim is to improve driver awareness of obstacles and potential dangers, thereby reducing stress and accident rates. V2X also hastens traffic flow by giving an advanced warning (and mitigation options) of traffic congestion, intelligent speed assistance, and facilitating access to parking spaces.

    These objectives are clear, but it’s important to understand the safety and security implications associated with these features—the implications of something going wrong are huge, as shown very publicly in examples where autonomous-driving systems have failed. The principle of trustworthiness (Fig. 1) dictates that the design of any ADAS architecture must incorporate adequate safety and security measures.

    Consider the case of a complex intersection (Fig. 2). A car’s onboard sensors, such as the camera and radar, only work in line-of-sight situations. Therefore, a vulnerable road user hidden by another vehicle, such as a cyclist, will not be visible.

    Meeting the safety requirements of the trustworthiness model requires supporting technologies. For example, a V2X-enabled roadside infrastructure unit (“smart traffic light”) at the intersection and the cyclist’s smartphone can provide supplementary information that could be shared with the car to improve its situational awareness.

    V2X Recipe

    So, what are the engineering ingredients required to enable this use case? Obviously, we need high-reliability and ubiquitous connectivity as targeted for both 5G and 6G communication. All parties involved need to be connected or, at the very minimum, be within the detection/sensing range. Beyond that, we need an ecosystem that enables the various data streams to be shared and processed in a time-sensitive matter.

    This is where we see 6G providing value: It can provide joint capabilities of both communication and sensing. In practice, this means that the communications network uses its radio capabilities to implement a sensing function.

    It could be either very radar-like (a wireless telecommunication system and a radar incorporating very similar components and architectures) or through artificial intelligence (the wireless network knows you’re crossing the road to go to a coffee shop every weekday). As the wireless radio access network (RAN) becomes situationally aware, joint communication and sensing principles can be applied. The next step is to place this situational information at the most beneficial point in the network to increase safety.

    Increasing the levels of autonomy requires complete integrity of the vehicle’s situational awareness, in all weather conditions and visibilities, as well as the ability to react to its environment within an appropriate timescale.

    The scenario described above and the associated data requirements highlight the growing demands placed on 5G networks by the connected vehicle. It also gives an insight into the 6G vision.
    The 6G Vision

    As we explore the “automotive angle” to (wireless) networking to realize the full potential of the connected car, let’s delve into how the 6G vision is taking shape as a technology that underpins its promise of enhanced network capacity, reliability, and intelligence.

    Continuing the trend of wireless communication utilizing higher and higher frequency bands to unlock higher channel bandwidths and data rates, 6G is predicted to extend the current 5G low-frequency bands up as far as 24 GHz. Most interest is in the mid-band or centimetric spectrum range at 6 to 20 GHz. Beyond that, the millimeter-wave (mmWave) bands up to the terahertz frequencies (100 GHz and higher) are of significant interest since wider chunks of bandwidth can potentially be used

    One of the most innovative capabilities to emerge from the 6G specifications is integrated sensing. The sub-THz frequencies proposed for 6G require beamforming/MIMO to achieve acceptable coverage. The implementation of a 6G radio interface, therefore, includes the mechanisms for radar-like sensing, and the frequencies involved yield very high resolutions based on the wider bandwidth availability. A 5-GHz RF bandwidth, for example, already brings a 3-cm spatial resolution.

    There’s strong industry interest in this Joint Communication and Sensing (JCAS) technology and multiple incentives for its use in 6G development. For the network operator, the ability to sense objects potentially blocking a beam and automatically find more optimal propagation paths improves network effectiveness.

    As a general statement, the sensing function can be positioned as a cost-effective complement to the 6G communication technology. Furthermore, in industrial environments, particularly with robotics, considerable cost benefits are possible by combining sensing and communications into single hardware units.

    6G Opportunities: Enablement of Automotive Use Cases

    The earlier discussion highlighted how any trustworthy system would need large amounts of data to be transmitted and processed in a time-sensitive manner. Vehicle autonomy, on a wider scale, will therefore consume huge amounts of bandwidth and require significant advances in cloud-edge processing to bring compute power closer to the roadside. Ultimately, there will be a limit to 5G’s ability to support this requirement, driving the need for the 6G spectrum.

    Beyond delivering increased bandwidth and reduced latency, 6G’s passive sensing capabilities will greatly improve a vehicle’s ability to detect non-connected entities, such as the cyclist in the intersection scenario.

    6G’s higher sensing capabilities, enabled by sub-THz frequencies, improve the system’s ability to recognize and classify objects and accurately estimate positioning and movement. This enhanced sensing capability improves with higher network density and, therefore, will be beneficial in urban areas, where network densities are highest and traffic systems more complex.

    Next to “passive” sensing, 6G’s capabilities also can enhance the situational awareness toward better driver-assist capabilities by using improved cellular-system link-based localization techniques as described in Henk Wymeersch’s lecture, “Radio Localization: Basics and State of the Art”:

    Highly accurate localization is essential for higher levels of driving autonomy, which is a strong area of opportunity for 6G. Current localization systems, based on GNSS/GPS or 5G networks, use trigonometric time-of-flight (ToF)-based technologies that require signals from multiple sources located at different positions to calculate an object’s position. A 5G system would need access to a minimum of three separate base stations for accuracy.

    The latest technologies, though, can work with fewer base stations, analyzing the various propagation paths between transmitter and receiver that result from reflections in the local cell. The transmission characteristics of sub-THz waveforms mean that, with 6G networks, accurate positioning can be achieved even with a single base station. It would take advantage of the multiple reflective pathways of the carrier signal.

    This brings significant benefits, particularly in cities, where “urban canyons” can adversely impact the accuracy of GNSS positioning systems. With network densification, 6G can be used to correct these inaccuracies, sharing information to improve the trustworthiness of the positioning system.

    Conclusion

    Sophisticated operating models are already in place to support the evolution of the connected vehicle. Core building blocks, including sensing, improved network localization, and V2X connectivity, are well-defined to increase safety levels. The trustworthiness of these models can be enhanced by the availability of networking capabilities beyond those of 5G.

    6G network densification with smaller cells, combined with new frequency bands with higher bandwidth, can enable the convergence of connectivity with environmental awareness through sensing and localization. The large bandwidth foreseen for 6G technology provides high-data-rate connectivity supporting data and ML-driven applications. These new 6G features will open up new opportunities for augmenting car safety, as well as new automotive services.

    Reply
  29. Tomi Engdahl says:

    Webinar: THz communication – a key enabler for beyond 5G?
    https://www.rohde-schwarz.com/fi/knowledge-center/webinars/webinar-thz-communication-register_254482.html?cid=010_com_eml-nl_141_ed_22-11_int__webinar-thz-communication_eblast_text-ad____MM-1083185

    Sub-terahertz and terahertz (THz) waves, ranging from 0.1 THz to 10 THz, fall in the spectral region between microwave and optical waves. The prospect of enabling transfer rates in the terabit/sec range make them a key research area of 6G mobile communication.

    Sub-THz technologies require highly integrated frontends, including array antennas, that necessitate advanced over-the-air testing methods with a frequency range up to 300 GHz. To fully exploit the potential of this frequency range for future wireless communications, it is also crucial to understand the propagation characteristics by performing channel measurements.

    This requires an interdisciplinary approach between high-frequency semiconductor technology for RF electronics as well as alternative approaches using photonic technologies. The THz region also shows great potential for other application areas, from imaging to spectroscopy and sensing.

    White paper: Fundamentals of THz technology for 6G
    https://www.rohde-schwarz.com/fi/solutions/test-and-measurement/wireless-communication/cellular-standards/6g/white-paper-fundamentals-of-thz-technology-for-6g-by-rohde-schwarz-registration-_255934.html?cid=010_com_eml-nl_141_ed_22-11_int__white-paper-fundamentals_eblast_text-ad____MM-1083185

    The prospect of offering large contiguous frequency bands to meet the demand for extremely high data transfer rates in the Tbit/s range is making terahertz (THz) waves a key research area for the next generation of wireless communications (6G).

    This white paper offers an overview of the fundamentals of THz waves and their properties for various applications with a focus on 6G based communications.

    In this white paper you will learn more about:

    Key performance requirements and research areas of 6G
    THz based communication and sensing
    Generation of THz radiation
    High-frequency semiconductor technologies
    Channel propagation measurements

    Reply
  30. Tomi Engdahl says:

    Nokia siirsi jo 20 gigabittiä mikroaalloilla
    https://etn.fi/index.php/13-news/14316-nokia-siirsi-jo-20-gigabittiae-mikroaalloilla

    Nokia kertoo yltäneensä mikroaaltolinkissä jo 20 gigabitin datanopeuteen kenttätestissä yhdessä Orange Francen kanssa. Ennätysvauhti onnistui yhdistämällä samaan linkkiin E-alueen taajuuksia ja perinteisiä taajuuksia. Kaikkiaan linkki ylsi 3,6 kilometrin päähän. Siinä käytettiin kahta 18 GHz:n kaistalla toimivaa mikroaaltoradiota jotka yhdistettiin kahteen 80 GHz:n taajuudella toimivaan E-Band-mikroaaltoradioon käyttämällä yhtä kaksikaistaista (18+80 GHz) antennia.

    Nokia esitteli uuden sukupolven Wavence mikroaalotlähettimet reilu vuosi sitten. Silloin laitteisiin lisättiin lyhyen ja pitkän kantaman linkit, tuki E-kaistan taajuuksille ja ohjelmallinen määrittely eli SDN.

    Reply
  31. Tomi Engdahl says:

    ETSI käynnisti 6G-tutkimuksen terahertsialueella
    https://etn.fi/index.php/13-news/14370-etsi-kaeynnisti-6g-tutkimuksen-terahertsialueella

    Yleisesti arvioidaan, että 6G-verkot voisivat olla käytössä joskus vuoden 2030 tienoilla, joten niiden kehitystyö on alkanut jo vuosia sitten. ETSI on nyt käynnistänyt työryhmän, jonka tarkoitus on kartoittaa terahertsialueen hyödyntämistä 6G-viestintään.

    Työryhmä on nimeltään ETSI ISG THz ( ETSI Industry Specification Group on Terahertz) ja se piti aloituskokouksensa 8. joulukuuta. Aloituskokouksessa määriteltiin työryhmän kaksi ensimmäistä tutkimusaluetta.

    Ensinnäkin työryhmä tutkii korkeita tiedonsiirtonopeuksia vaativia mobiilisovelluksia kuten virtuaali- ja lisättyä todellisuutta, sekä ajoneuvo- ja satelliittiviestintää. Toiseen kategoriaan kuuluvat sovellukset, jotka vaativat sekä viestintä- että tunnistustoimintoja, kuten holograafinen televiestintä sekä robotiikka ja yhteistyörobottien eli cobottien toiminta.

    Työryhmässä on mukana jo 31 yritystä. Se pyrkii määrittelemään kohdeskenaariot ja konkreettiset kiinnostavat taajuuskaistat THz-viestinnässä. Tarkasteltavaksi halutaan esimerkiksi terahertsisignaalien siroutuminen, liikkuvuuden vaikutukset säteilyyn ja jopa molekyylien absorptio näillä taajuuksilla. Lähtökohtana ryhmä analysoi lukuisia tutkimushankkeita, jotka tarjoavat varhaisia mittauskampanjoita, ja jotka on julkaistu asiaankuuluvassa kirjallisuudessa

    ETSIn mukaan THz-viestinnällä on jossain määrin yhtäläisyyksiä ja yhteisiä haasteita millimetriaaltotekniikan kanssa. Niissä tarvitaan käytännössä näköyhteyttä tai ainakin menetemiä, joissa signaali saadaan heijastettua laitteiden välillä.

    Reply
  32. Tomi Engdahl says:

    THE MYSTERIOUS “TERHERTZ GAP” — When it comes to tapping into terahertz waves, the world of electronics faces a fundamental problem. To enter the gap, the silicon chips in our electronics need to pulsate quickly—at trillions of cycles per second (hence a terahertz). The chips in your phone or computer can operate perfectly well at millions or billions cycles per second, but they struggle to reach the trillions. The highly experimental terahertz components that do work can cost as much as a luxury car. Engineers are working to bring the prices down.

    You’ve probably never heard of terahertz waves, but they could change your life
    Welcome to the electromagnetic dark zone
    https://www.popsci.com/science/terahertz-waves-future-technologies/

    Reply
  33. Tomi Engdahl says:

    Terahertz Radio Breakthrough Pushes Multi-Gig Connections Over a Mile, Could Boost Rural Networks
    Where previous approaches have been measured in feet, this radio system can rapidly send data between devices over a mile away
    https://www.hackster.io/news/terahertz-radio-breakthrough-pushes-multi-gig-connections-over-a-mile-could-boost-rural-networks-ba006928cf4a

    Reply
  34. Tomi Engdahl says:

    There’ll be signal everywhere if every single person is an antenna.

    Scientists Want To Use People As Human Antennas For 6G Technology
    You won’t need a tin foil hat, but a copper bracelet will help.
    https://www.iflscience.com/scientists-want-to-use-people-as-human-antennas-for-6g-technology-67006

    For context, 5G technology uses radio waves to encode and carry information. It’s able to carry up to 10 times more information than its predecessor, 4G, by using higher frequencies of radio waves that are able to handle more bandwidth.

    One theory is that 6G could achieve even higher bandwidths and transmit more information by using Visible Light Communication (VLC). Instead of radio waves, information can be transmitted by LEDs that rapidly flash on and off in the blink of an eye.

    “VLC is quite simple and interesting. Instead of using radio signals to send information wirelessly, it uses the light from LEDs that can turn on and off, up to one million times per second,”

    “Anything with a camera, like our smartphones, tablets or laptops, could be the receiver,” Xiong added.

    It’s an interesting idea, but one problem is that this method of communication involves a lot of “leakage” in the form of radio waves called RF signals. This means the technology isn’t very efficient, as a significant amount of energy is blurted into the environment and lost.

    In a new paper, researchers at the University of Massachusetts Amherst looked at ways that the leaked RF signals could be captured and harnessed for another purpose. After experimenting with a bunch of different designs, they settled on a copper coil that could be attached to different objects, including walls, phones, and laptops, as well as objects made out of plastic, cardboard, wood, and steel.

    To their surprise, they found that one of the most effective ways to capture the leakage was through a simple coil of copper wire worn as a bracelet on the upper forearm of a person. The device costs less than 50 cents to make, but the researchers said it could capture enough power to support many sensors, such as on-body health monitoring sensors.

    “Ultimately, we want to be able to harvest waste energy from all sorts of sources in order to power future technology,” added Xiong.

    Of course, all of this is strictly theoretical for now. It’s also worth considering how people might feel about becoming a leaky signal antenna for 6G technology, especially when you consider the wild conspiracy theories that surround 5G.

    Reply
  35. Tomi Engdahl says:

    6G-kanavia mallinnetaan jo yli 100 gigahertsissä
    https://etn.fi/index.php/13-news/14450-6g-kanavia-mallinnetaan-jo-yli-100-gigahertsissae

    6G-tekniikkaa kehitetään jo kovaa vauhtia. Yksi ideoista on viedä liikenne yli sataan gigahertsiin, josta löytyy paljon vapaita alueita. Mittauslaitevalmistaja Rohde & Schwarz tekee jo mallinnuksia ja mittauksia sekä 158 gigahertsissä että 300 gigahertsissä.

    Yrityksen mukaan 6G-standardia kehitettäessä on tärkeää ymmärtää, miten sähkömagneettinen aalto etenee eri taajuuksilla. 100-330 gigahertsin alue on alkanut kiinnostaa tutkijoita enemmän ja nyt Rohde & Schwarz on toimittanut oman datansa ITU-R Working Group 5D:n eli ns. W5PD-työryhmän raporttiin. Raporttia tullaan käsittelemään ITU:n WRC23-radiokokouksessa.

    Englanninkielessä alle 300 gigahertsin aluetta kutsutaan yleensä nimellä Sub-THz-taajuudet. Tavoitteena on, että näin korkeilla taajuuksilla päästäisiin sekä terabitin datanopeuksiin että erittäin alhaisiin latensseihin. Yli 100 gigahertsin taajuuksissa linkkeihin tulee monenlaisia ongelmia: häviöt kasvavat, signaali siroaa aivan eri tavoin (ns. monipolkuvaikutukset) ja erilaisten esteiden läpäisykyky heikkenee entisestään.

    ITU:n WRC23-radiokokouksessa on tarkoitus keskustella yli sadan gigahertsin taajuuksista, sillä nykyinen 3GPP-kanavamalli ei puhu mitään yli 100 GHz taajuuksista. Tärkeä ensimmäinen askel 6G:n standardointiprosessissa on laajentaa tämä kanavamalli korkeammille taajuuksille.

    Tutkimustoiminnan jatkamiseksi ja laajentamiseksi Rohde & Schwarzille on myönnetty kokeellinen lisenssi Saksan liittovaltion verkkovirastolta

    Reply
  36. Tomi Engdahl says:

    The pace of technological development is now swifter than ever, but societal implications often become afterthoughts

    Examining the Impact of 6G Telecommunications on Society What to consider before the next generation of connectivity
    https://spectrum.ieee.org/examining-the-impact-of-6g-telecommunications-on-society?share_id=7404846&socialux=facebook&utm_campaign=RebelMouse&utm_content=IEEE+Spectrum&utm_medium=social&utm_source=facebook

    With greater global connectivity, the case for 6G telecommunications has become more apparent than ever before. The generations of wireless cellular technology (or the Gs) have been incrementing every 10 years: 1G prior to 1990, 2G in 1990, 3G in 2000, 4G in 2010, and 5G in 2020. We expect 6G to roll out in 2030.

    When the Gs are plotted over time, the data volume increases exponentially and therefore reinforces the need for newer technological platforms. With pun intended, technologists call this broadening, or broader usage of the frequency spectrum.

    Reply
  37. Tomi Engdahl says:

    The development of sub-THz communication as envisioned for 6G is the focus of a measurement campaign conducted by Rohde & Schwarz….

    R&S probes sub-THz channel measurements for 6G
    https://www.edn.com/rs-probes-sub-thz-channel-measurements-for-6g/

    The development of sub-THz communication as envisioned for 6G is the focus of a measurement campaign conducted by Rohde & Schwarz. Sub-THz typically spans the frequency range from 100 GHz to 330 GHz and represents one potential building block of a future 6G wireless communication standard. To fully exploit the technology’s potential, it is crucial to understand the electromagnetic wave propagation characteristics of THz frequencies by performing channel sounding measurements.

    Reply
  38. Tomi Engdahl says:

    “Engineers at Bell had made it possible, using a system that transmits conversations “partway by radio, partway by telephone lines.” This necessitated “a number of transmitting and receiving stations connected to telephone lines,” installed “at intervals along the highway so that one will always be in range of the moving vehicle.”

    Bell Telephone Launched a Mobile Phone During the 1940s: Watch Bell’s Film Showing How It Worked
    in Film, History, Technology | January 24th, 2023
    https://www.openculture.com/2023/01/bell-telephone-launched-a-mobile-phone-during-the-1940s.html

    As dramatized in Mobile Telephones, the process of actually ringing up the driver of a vehicle involves calling a classic forties switchboard operator and asking her to make the connection. But otherwise, the process won’t feel entirely unfamiliar to the mobile phone users today — that is, to the majority of the people in the world.

    Cellphones have become such an integral part of life in the twenty-first century that few of us really feel the need to understand just how they work.

    Reply
  39. Tomi Engdahl says:

    Nokian tukema tohtoriohjelma keskittyy IoT- ja 6G-tekniikoihin
    https://www.uusiteknologia.fi/2023/02/01/nokian-tukema-tohtoriohjelma-keskittyy-iot-ja-6g-tekniikoihin/

    Nokian lahjoituksen avulla Aalto-yliopistossa käynnistetty tohtoriohjelma keskittyy tulevaisuuden 6G- ja IoT-viestinjärjestelmien laitekehitykseen. Ohjelmassa suunnitellaan erityisesti energiatehokkaita mikropiirejä ja antennijärjestelmiä. Ensimmäisiä tuloksia uudesta tohtoriohjelmasta odotetaan jo tänä vuonna.

    Uusien tietoliikennelaitteiston energiatehokas suunnittelu vaikuttaa tulevaisuudessa esimerkiksi 6G:n ja IoT:n kehitykseen eri aloilla kuten verkkoviestinnässä, liikenteessä ja terveydenhuollossa. ”Radiolaitteissa tutkimuksen painopistealueet ovat korkeammat taajuudet ja älykkäämmät antennit, joiden avulla tietoa voidaan siirtää ja ra

    dioaaltoenergiaa voidaan kohdistaa paremmin, siten että saavutetaan sekä suurempi tiedonsiirtonopeus että energiatehokkuus”, kertoi Aalto-yliopiston radiotekniikan professori Ville Viikari toteaa.

    Reply
  40. Tomi Engdahl says:

    NOKIA PUTS THE WORLD ON THE PATH TO 6G WITH 5G ADVANCED
    https://nokiamob.net/2023/01/15/nokia-puts-the-world-on-the-path-to-6g-with-5g-advanced/

    Last year Nokia has unveiled a 5G Advanced, the next evolutionary step in 5G technology. This new and improved network aims to realize the full potential of 5G while paving the way for 6G, which will connect digital and physical data. We had the same thing with 4G, when many network companies developed 4.9G to ease the transition to 5G. Simply put, 5G Advanced is to 5G what 4.9G is to 4G.

    The new standard should help us power extended reality XR applications that will bring meaning to the metaverse. In addition, improved 5G network connectivity should reach remote industrial and residential areas that cannot be reached by terrestrial networks. Improved networks should also further optimize energy efficiency by simplifying traffic management.

    Reply
  41. Tomi Engdahl says:

    Ministeri Harakka avasi Helsingin 6G-seminaarin
    https://www.uusiteknologia.fi/2023/02/06/ministeri-harakka-avasi-6g-seminaarin/

    Liikenne- ja viestintäministeri Timo Harakka avasi tänään Business Finlandin ja 6G Finlandin Helsingissä järjestämän Elements of 6G Unleashed -tilaisuuden. Harakka korosti avauspuheenvuorossaan demokraattisten maiden yhteistyötä teknologian kehittämisessä ja hyödyntämisessä. Seminaarivideo on tulossa nettijakeluun lähiaikoina.

    Helsingissä järjestetyssä tilaisuudessa keskusteltiin viimeaikaisesta edistyksestä 6G:n tutkimuksessa ja kehityksessä kansallisella ja koko Euroopan tasolla. Suomi on johtava maa mobiiliteknologioissa, mukaan lukien entistä tehokkaampien 6G-verkkojen kehitystyössä.

    Reply
  42. Tomi Engdahl says:

    Ministeri Harakka avasi Helsingin 6G-seminaarin
    https://www.uusiteknologia.fi/2023/02/06/ministeri-harakka-avasi-6g-seminaarin/

    Liikenne- ja viestintäministeri Timo Harakka avasi tänään Business Finlandin ja 6G Finlandin Helsingissä järjestämän Elements of 6G Unleashed -tilaisuuden. Harakka korosti avauspuheenvuorossaan demokraattisten maiden yhteistyötä teknologian kehittämisessä ja hyödyntämisessä. Seminaarivideo on tulossa nettijakeluun lähiaikoina.

    Helsingissä järjestetyssä tilaisuudessa keskusteltiin viimeaikaisesta edistyksestä 6G:n tutkimuksessa ja kehityksessä kansallisella ja koko Euroopan tasolla. Suomi on johtava maa mobiiliteknologioissa, mukaan lukien entistä tehokkaampien 6G-verkkojen kehitystyössä.

    Ministeri Harakka tapasi myös EU:n sisämarkkinakomissaarin Thierry Bretonin, joka piti tilaisuuden loppupuheenvuoron. Ministeri Harakka ja komissaari Breton keskustelivat muun muassa kyberturvallisuudesta. Bretonia kiinnosti myös Suomen suunnittelema uusi arktinen tietoliikenneyhteys.

    EU:n kybervalmiudet korostuvat nykytilanteessa entisestään nykyisessä turvallisuustilanteessa. ’’Keskeiset arvomme, yksilönvapaus ja perusoikeudet, on taattava 6G-sääntelyssä ja -standardeissa’’, sanoi tilaisuudessa liikenneministeri Timo Harakka. Myös ilmastonsuojelu on huomioitava aivan alusta pitäen Harakka sanoi.

    Vihreä ja digitaalinen siirtymä kulkevat seminaarin puhujien mukaan käsi kädessä. Ei ole toista ilman toista. Siksi vihreän tuotannon suunnitelmissa kannattaa panostaa sinne, missä Euroopalla on kilpailuetu. Samalla uusi 6G on ilmastoteollisuuden mahdollistaja.

    Reply
  43. Tomi Engdahl says:

    Kiinnostaako 5G ja 6G? Nyt voit opiskella niitä ilmaiseksi
    https://etn.fi/index.php/13-news/14559-kiinnostaako-5g-ja-6g-nyt-voit-opiskella-niitae-ilmaiseksi

    5G alkaa olla levinnyt useimpiin osiin Suomea ja nyt työ alkaa kohti 6G-verkkoja. Mutta mitä nämä pitävät sisällään? Siihen voi nyt jokainen paneutua Helsingin yliopiston avoimella verkkokurssilla. Kurssin lanseerasi tietotekniikan professori Sasu Sarkoma tänään Business Finlandin 6G-tapahtumassa.

    Kurssi on nimeltään 5G and beyond. Se on toteutettu MOOC-alustalla ja opiskelu onnistuu kaikilla mahdollisilla laitteilla. MOOC on hyvin suosittu avoin alusta, jolla on yli miljoona rekisteröitynyttä opiskelijaa ja kurssien määrä kasvaa koko ajan.

    5G and beyond -kurssilla opetetaan mobiilitekniikan peruskäsitteitä. Sarkoman mukaan painoarvo on 5G:ssä ja sen evoluutiossa, jotka valmistavat kohti 6G-verkkoja. Kurssi keskittyy radioverkkoihin ja core-verkkoihin ja se oikeuttaa myös kahteen ECTS-opintopisteeseen.

    - 6G:n odotetaan tulevan käyttöön vuosikymmenen lopulla ja tekoäly ja pilvipalvelut muodostavat aiempia generaatioita keskeisemmän osan verkkoja, Sarkoma sanoi.

    Kurssi löytyy osoitteesta 6G.MOOG.FI.

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*