AI trends 2025

AI is developing all the time. Here are some picks from several articles what is expected to happen in AI and around it in 2025. Here are picks from various articles, the texts are picks from the article edited and in some cases translated for clarity.

AI in 2025: Five Defining Themes
https://news.sap.com/2025/01/ai-in-2025-defining-themes/
Artificial intelligence (AI) is accelerating at an astonishing pace, quickly moving from emerging technologies to impacting how businesses run. From building AI agents to interacting with technology in ways that feel more like a natural conversation, AI technologies are poised to transform how we work.
But what exactly lies ahead?
1. Agentic AI: Goodbye Agent Washing, Welcome Multi-Agent Systems
AI agents are currently in their infancy. While many software vendors are releasing and labeling the first “AI agents” based on simple conversational document search, advanced AI agents that will be able to plan, reason, use tools, collaborate with humans and other agents, and iteratively reflect on progress until they achieve their objective are on the horizon. The year 2025 will see them rapidly evolve and act more autonomously. More specifically, 2025 will see AI agents deployed more readily “under the hood,” driving complex agentic workflows.
In short, AI will handle mundane, high-volume tasks while the value of human judgement, creativity, and quality outcomes will increase.
2. Models: No Context, No Value
Large language models (LLMs) will continue to become a commodity for vanilla generative AI tasks, a trend that has already started. LLMs are drawing on an increasingly tapped pool of public data scraped from the internet. This will only worsen, and companies must learn to adapt their models to unique, content-rich data sources.
We will also see a greater variety of foundation models that fulfill different purposes. Take, for example, physics-informed neural networks (PINNs), which generate outcomes based on predictions grounded in physical reality or robotics. PINNs are set to gain more importance in the job market because they will enable autonomous robots to navigate and execute tasks in the real world.
Models will increasingly become more multimodal, meaning an AI system can process information from various input types.
3. Adoption: From Buzz to Business
While 2024 was all about introducing AI use cases and their value for organizations and individuals alike, 2025 will see the industry’s unprecedented adoption of AI specifically for businesses. More people will understand when and how to use AI, and the technology will mature to the point where it can deal with critical business issues such as managing multi-national complexities. Many companies will also gain practical experience working for the first time through issues like AI-specific legal and data privacy terms (compared to when companies started moving to the cloud 10 years ago), building the foundation for applying the technology to business processes.
4. User Experience: AI Is Becoming the New UI
AI’s next frontier is seamlessly unifying people, data, and processes to amplify business outcomes. In 2025, we will see increased adoption of AI across the workforce as people discover the benefits of humans plus AI.
This means disrupting the classical user experience from system-led interactions to intent-based, people-led conversations with AI acting in the background. AI copilots will become the new UI for engaging with a system, making software more accessible and easier for people. AI won’t be limited to one app; it might even replace them one day. With AI, frontend, backend, browser, and apps are blurring. This is like giving your AI “arms, legs, and eyes.”
5. Regulation: Innovate, Then Regulate
It’s fair to say that governments worldwide are struggling to keep pace with the rapid advancements in AI technology and to develop meaningful regulatory frameworks that set appropriate guardrails for AI without compromising innovation.

12 AI predictions for 2025
This year we’ve seen AI move from pilots into production use cases. In 2025, they’ll expand into fully-scaled, enterprise-wide deployments.
https://www.cio.com/article/3630070/12-ai-predictions-for-2025.html
This year we’ve seen AI move from pilots into production use cases. In 2025, they’ll expand into fully-scaled, enterprise-wide deployments.
1. Small language models and edge computing
Most of the attention this year and last has been on the big language models — specifically on ChatGPT in its various permutations, as well as competitors like Anthropic’s Claude and Meta’s Llama models. But for many business use cases, LLMs are overkill and are too expensive, and too slow, for practical use.
“Looking ahead to 2025, I expect small language models, specifically custom models, to become a more common solution for many businesses,”
2. AI will approach human reasoning ability
In mid-September, OpenAI released a new series of models that thinks through problems much like a person would, it claims. The company says it can achieve PhD-level performance in challenging benchmark tests in physics, chemistry, and biology. For example, the previous best model, GPT-4o, could only solve 13% of the problems on the International Mathematics Olympiad, while the new reasoning model solved 83%.
If AI can reason better, then it will make it possible for AI agents to understand our intent, translate that into a series of steps, and do things on our behalf, says Gartner analyst Arun Chandrasekaran. “Reasoning also helps us use AI as more of a decision support system,”
3. Massive growth in proven use cases
This year, we’ve seen some use cases proven to have ROI, says Monteiro. In 2025, those use cases will see massive adoption, especially if the AI technology is integrated into the software platforms that companies are already using, making it very simple to adopt.
“The fields of customer service, marketing, and customer development are going to see massive adoption,”
4. The evolution of agile development
The agile manifesto was released in 2001 and, since then, the development philosophy has steadily gained over the previous waterfall style of software development.
“For the last 15 years or so, it’s been the de-facto standard for how modern software development works,”
5. Increased regulation
At the end of September, California governor Gavin Newsom signed a law requiring gen AI developers to disclose the data they used to train their systems, which applies to developers who make gen AI systems publicly available to Californians. Developers must comply by the start of 2026.
There are also regulations about the use of deep fakes, facial recognition, and more. The most comprehensive law, the EU’s AI Act, which went into effect last summer, is also something that companies will have to comply with starting in mid-2026, so, again, 2025 is the year when they will need to get ready.
6. AI will become accessible and ubiquitous
With gen AI, people are still at the stage of trying to figure out what gen AI is, how it works, and how to use it.
“There’s going to be a lot less of that,” he says. But gen AI will become ubiquitous and seamlessly woven into workflows, the way the internet is today.
7. Agents will begin replacing services
Software has evolved from big, monolithic systems running on mainframes, to desktop apps, to distributed, service-based architectures, web applications, and mobile apps. Now, it will evolve again, says Malhotra. “Agents are the next phase,” he says. Agents can be more loosely coupled than services, making these architectures more flexible, resilient and smart. And that will bring with it a completely new stack of tools and development processes.
8. The rise of agentic assistants
In addition to agents replacing software components, we’ll also see the rise of agentic assistants, adds Malhotra. Take for example that task of keeping up with regulations.
Today, consultants get continuing education to stay abreast of new laws, or reach out to colleagues who are already experts in them. It takes time for the new knowledge to disseminate and be fully absorbed by employees.
“But an AI agent can be instantly updated to ensure that all our work is compliant with the new laws,” says Malhotra. “This isn’t science fiction.”
9. Multi-agent systems
Sure, AI agents are interesting. But things are going to get really interesting when agents start talking to each other, says Babak Hodjat, CTO of AI at Cognizant. It won’t happen overnight, of course, and companies will need to be careful that these agentic systems don’t go off the rails.
Companies such as Sailes and Salesforce are already developing multi-agent workflows.
10. Multi-modal AI
Humans and the companies we build are multi-modal. We read and write text, we speak and listen, we see and we draw. And we do all these things through time, so we understand that some things come before other things. Today’s AI models are, for the most part, fragmentary. One can create images, another can only handle text, and some recent ones can understand or produce video.
11. Multi-model routing
Not to be confused with multi-modal AI, multi-modal routing is when companies use more than one LLM to power their gen AI applications. Different AI models are better at different things, and some are cheaper than others, or have lower latency. And then there’s the matter of having all your eggs in one basket.
“A number of CIOs I’ve spoken with recently are thinking about the old ERP days of vendor lock,” says Brett Barton, global AI practice leader at Unisys. “And it’s top of mind for many as they look at their application portfolio, specifically as it relates to cloud and AI capabilities.”
Diversifying away from using just a single model for all use cases means a company is less dependent on any one provider and can be more flexible as circumstances change.
12. Mass customization of enterprise software
Today, only the largest companies, with the deepest pockets, get to have custom software developed specifically for them. It’s just not economically feasible to build large systems for small use cases.
“Right now, people are all using the same version of Teams or Slack or what have you,” says Ernst & Young’s Malhotra. “Microsoft can’t make a custom version just for me.” But once AI begins to accelerate the speed of software development while reducing costs, it starts to become much more feasible.

9 IT resolutions for 2025
https://www.cio.com/article/3629833/9-it-resolutions-for-2025.html
1. Innovate
“We’re embracing innovation,”
2. Double down on harnessing the power of AI
Not surprisingly, getting more out of AI is top of mind for many CIOs.
“I am excited about the potential of generative AI, particularly in the security space,”
3. And ensure effective and secure AI rollouts
“AI is everywhere, and while its benefits are extensive, implementing it effectively across a corporation presents challenges. Balancing the rollout with proper training, adoption, and careful measurement of costs and benefits is essential, particularly while securing company assets in tandem,”
4. Focus on responsible AI
The possibilities of AI grow by the day — but so do the risks.
“My resolution is to mature in our execution of responsible AI,”
“AI is the new gold and in order to truly maximize it’s potential, we must first have the proper guardrails in place. Taking a human-first approach to AI will help ensure our state can maintain ethics while taking advantage of the new AI innovations.”
5. Deliver value from generative AI
As organizations move from experimenting and testing generative AI use cases, they’re looking for gen AI to deliver real business value.
“As we go into 2025, we’ll continue to see the evolution of gen AI. But it’s no longer about just standing it up. It’s more about optimizing and maximizing the value we’re getting out of gen AI,”
6. Empower global talent
Although harnessing AI is a top objective for Morgan Stanley’s Wetmur, she says she’s equally committed to harnessing the power of people.
7. Create a wholistic learning culture
Wetmur has another talent-related objective: to create a learning culture — not just in her own department but across all divisions.
8. Deliver better digital experiences
Deltek’s Cilsick has her sights set on improving her company’s digital employee experience, believing that a better DEX will yield benefits in multiple ways.
Cilsick says she first wants to bring in new technologies and automation to “make things as easy as possible,” mirroring the digital experiences most workers have when using consumer technologies.
“It’s really about leveraging tech to make sure [employees] are more efficient and productive,”
“In 2025 my primary focus as CIO will be on transforming operational efficiency, maximizing business productivity, and enhancing employee experiences,”
9. Position the company for long-term success
Lieberman wants to look beyond 2025, saying another resolution for the year is “to develop a longer-term view of our technology roadmap so that we can strategically decide where to invest our resources.”
“My resolutions for 2025 reflect the evolving needs of our organization, the opportunities presented by AI and emerging technologies, and the necessity to balance innovation with operational efficiency,”
Lieberman aims to develop AI capabilities to automate routine tasks.
“Bots will handle common inquiries ranging from sales account summaries to HR benefits, reducing response times and freeing up resources for strategic initiatives,”

Not just hype — here are real-world use cases for AI agents
https://venturebeat.com/ai/not-just-hype-here-are-real-world-use-cases-for-ai-agents/
Just seven or eight months ago, when a customer called in to or emailed Baca Systems with a service question, a human agent handling the query would begin searching for similar cases in the system and analyzing technical documents.
This process would take roughly five to seven minutes; then the agent could offer the “first meaningful response” and finally begin troubleshooting.
But now, with AI agents powered by Salesforce, that time has been shortened to as few as five to 10 seconds.
Now, instead of having to sift through databases for previous customer calls and similar cases, human reps can ask the AI agent to find the relevant information. The AI runs in the background and allows humans to respond right away, Russo noted.
AI can serve as a sales development representative (SDR) to send out general inquires and emails, have a back-and-forth dialogue, then pass the prospect to a member of the sales team, Russo explained.
But once the company implements Salesforce’s Agentforce, a customer needing to modify an order will be able to communicate their needs with AI in natural language, and the AI agent will automatically make adjustments. When more complex issues come up — such as a reconfiguration of an order or an all-out venue change — the AI agent will quickly push the matter up to a human rep.

Open Source in 2025: Strap In, Disruption Straight Ahead
Look for new tensions to arise in the New Year over licensing, the open source AI definition, security and compliance, and how to pay volunteer maintainers.
https://thenewstack.io/open-source-in-2025-strap-in-disruption-straight-ahead/
The trend of widely used open source software moving to more restrictive licensing isn’t new.
In addition to the demands of late-stage capitalism and impatient investors in companies built on open source tools, other outside factors are pressuring the open source world. There’s the promise/threat of generative AI, for instance. Or the shifting geopolitical landscape, which brings new security concerns and governance regulations.
What’s ahead for open source in 2025?
More Consolidation, More Licensing Changes
The Open Source AI Debate: Just Getting Started
Security and Compliance Concerns Will Rise
Paying Maintainers: More Cash, Creativity Needed

Kyberturvallisuuden ja tekoälyn tärkeimmät trendit 2025
https://www.uusiteknologia.fi/2024/11/20/kyberturvallisuuden-ja-tekoalyn-tarkeimmat-trendit-2025/
1. Cyber ​​infrastructure will be centered on a single, unified security platform
2. Big data will give an edge against new entrants
3. AI’s integrated role in 2025 means building trust, governance engagement, and a new kind of leadership
4. Businesses will adopt secure enterprise browsers more widely
5. AI’s energy implications will be more widely recognized in 2025
6. Quantum realities will become clearer in 2025
7. Security and marketing leaders will work more closely together

Presentation: For 2025, ‘AI eats the world’.
https://www.ben-evans.com/presentations

Just like other technologies that have gone before, such as cloud and cybersecurity automation, right now AI lacks maturity.
https://www.securityweek.com/ai-implementing-the-right-technology-for-the-right-use-case/
If 2023 and 2024 were the years of exploration, hype and excitement around AI, 2025 (and 2026) will be the year(s) that organizations start to focus on specific use cases for the most productive implementations of AI and, more importantly, to understand how to implement guardrails and governance so that it is viewed as less of a risk by security teams and more of a benefit to the organization.
Businesses are developing applications that add Large Language Model (LLM) capabilities to provide superior functionality and advanced personalization
Employees are using third party GenAI tools for research and productivity purposes
Developers are leveraging AI-powered code assistants to code faster and meet challenging production deadlines
Companies are building their own LLMs for internal use cases and commercial purposes.
AI is still maturing
However, just like other technologies that have gone before, such as cloud and cybersecurity automation, right now AI lacks maturity. Right now, we very much see AI in this “peak of inflated expectations” phase and predict that it will dip into the “trough of disillusionment”, where organizations realize that it is not the silver bullet they thought it would be. In fact, there are already signs of cynicism as decision-makers are bombarded with marketing messages from vendors and struggle to discern what is a genuine use case and what is not relevant for their organization.
There is also regulation that will come into force, such as the EU AI Act, which is a comprehensive legal framework that sets out rules for the development and use of AI.
AI certainly won’t solve every problem, and it should be used like automation, as part of a collaborative mix of people, process and technology. You simply can’t replace human intuition with AI, and many new AI regulations stipulate that human oversight is maintained.

7 Splunk Predictions for 2025
https://www.splunk.com/en_us/form/future-predictions.html
AI: Projects must prove their worth to anxious boards or risk defunding, and LLMs will go small to reduce operating costs and environmental impact.

OpenAI, Google and Anthropic Are Struggling to Build More Advanced AI
Three of the leading artificial intelligence companies are seeing diminishing returns from their costly efforts to develop newer models.
https://www.bloomberg.com/news/articles/2024-11-13/openai-google-and-anthropic-are-struggling-to-build-more-advanced-ai
Sources: OpenAI, Google, and Anthropic are all seeing diminishing returns from costly efforts to build new AI models; a new Gemini model misses internal targets

It Costs So Much to Run ChatGPT That OpenAI Is Losing Money on $200 ChatGPT Pro Subscriptions
https://futurism.com/the-byte/openai-chatgpt-pro-subscription-losing-money?fbclid=IwY2xjawH8epVleHRuA2FlbQIxMQABHeggEpKe8ZQfjtPRC0f2pOI7A3z9LFtFon8lVG2VAbj178dkxSQbX_2CJQ_aem_N_ll3ETcuQ4OTRrShHqNGg
In a post on X-formerly-Twitter, CEO Sam Altman admitted an “insane” fact: that the company is “currently losing money” on ChatGPT Pro subscriptions, which run $200 per month and give users access to its suite of products including its o1 “reasoning” model.
“People use it much more than we expected,” the cofounder wrote, later adding in response to another user that he “personally chose the price and thought we would make some money.”
Though Altman didn’t explicitly say why OpenAI is losing money on these premium subscriptions, the issue almost certainly comes down to the enormous expense of running AI infrastructure: the massive and increasing amounts of electricity needed to power the facilities that power AI, not to mention the cost of building and maintaining those data centers. Nowadays, a single query on the company’s most advanced models can cost a staggering $1,000.

Tekoäly edellyttää yhä nopeampia verkkoja
https://etn.fi/index.php/opinion/16974-tekoaely-edellyttaeae-yhae-nopeampia-verkkoja
A resilient digital infrastructure is critical to effectively harnessing telecommunications networks for AI innovations and cloud-based services. The increasing demand for data-rich applications related to AI requires a telecommunications network that can handle large amounts of data with low latency, writes Carl Hansson, Partner Solutions Manager at Orange Business.

AI’s Slowdown Is Everyone Else’s Opportunity
Businesses will benefit from some much-needed breathing space to figure out how to deliver that all-important return on investment.
https://www.bloomberg.com/opinion/articles/2024-11-20/ai-slowdown-is-everyone-else-s-opportunity

Näin sirumarkkinoilla käy ensi vuonna
https://etn.fi/index.php/13-news/16984-naein-sirumarkkinoilla-kaey-ensi-vuonna
The growing demand for high-performance computing (HPC) for artificial intelligence and HPC computing continues to be strong, with the market set to grow by more than 15 percent in 2025, IDC estimates in its recent Worldwide Semiconductor Technology Supply Chain Intelligence report.
IDC predicts eight significant trends for the chip market by 2025.
1. AI growth accelerates
2. Asia-Pacific IC Design Heats Up
3. TSMC’s leadership position is strengthening
4. The expansion of advanced processes is accelerating.
5. Mature process market recovers
6. 2nm Technology Breakthrough
7. Restructuring the Packaging and Testing Market
8. Advanced packaging technologies on the rise

2024: The year when MCUs became AI-enabled
https://www-edn-com.translate.goog/2024-the-year-when-mcus-became-ai-enabled/?fbclid=IwZXh0bgNhZW0CMTEAAR1_fEakArfPtgGZfjd-NiPd_MLBiuHyp9qfiszczOENPGPg38wzl9KOLrQ_aem_rLmf2vF2kjDIFGWzRVZWKw&_x_tr_sl=en&_x_tr_tl=fi&_x_tr_hl=fi&_x_tr_pto=wapp
The AI ​​party in the MCU space started in 2024, and in 2025, it is very likely that there will be more advancements in MCUs using lightweight AI models.
Adoption of AI acceleration features is a big step in the development of microcontrollers. The inclusion of AI features in microcontrollers started in 2024, and it is very likely that in 2025, their features and tools will develop further.

Just like other technologies that have gone before, such as cloud and cybersecurity automation, right now AI lacks maturity.
https://www.securityweek.com/ai-implementing-the-right-technology-for-the-right-use-case/
If 2023 and 2024 were the years of exploration, hype and excitement around AI, 2025 (and 2026) will be the year(s) that organizations start to focus on specific use cases for the most productive implementations of AI and, more importantly, to understand how to implement guardrails and governance so that it is viewed as less of a risk by security teams and more of a benefit to the organization.
Businesses are developing applications that add Large Language Model (LLM) capabilities to provide superior functionality and advanced personalization
Employees are using third party GenAI tools for research and productivity purposes
Developers are leveraging AI-powered code assistants to code faster and meet challenging production deadlines
Companies are building their own LLMs for internal use cases and commercial purposes.
AI is still maturing

AI Regulation Gets Serious in 2025 – Is Your Organization Ready?
While the challenges are significant, organizations have an opportunity to build scalable AI governance frameworks that ensure compliance while enabling responsible AI innovation.
https://www.securityweek.com/ai-regulation-gets-serious-in-2025-is-your-organization-ready/
Similar to the GDPR, the EU AI Act will take a phased approach to implementation. The first milestone arrives on February 2, 2025, when organizations operating in the EU must ensure that employees involved in AI use, deployment, or oversight possess adequate AI literacy. Thereafter from August 1 any new AI models based on GPAI standards must be fully compliant with the act. Also similar to GDPR is the threat of huge fines for non-compliance – EUR 35 million or 7 percent of worldwide annual turnover, whichever is higher.
While this requirement may appear manageable on the surface, many organizations are still in the early stages of defining and formalizing their AI usage policies.
Later phases of the EU AI Act, expected in late 2025 and into 2026, will introduce stricter requirements around prohibited and high-risk AI applications. For organizations, this will surface a significant governance challenge: maintaining visibility and control over AI assets.
Tracking the usage of standalone generative AI tools, such as ChatGPT or Claude, is relatively straightforward. However, the challenge intensifies when dealing with SaaS platforms that integrate AI functionalities on the backend. Analysts, including Gartner, refer to this as “embedded AI,” and its proliferation makes maintaining accurate AI asset inventories increasingly complex.
Where frameworks like the EU AI Act grow more complex is their focus on ‘high-risk’ use cases. Compliance will require organizations to move beyond merely identifying AI tools in use; they must also assess how these tools are used, what data is being shared, and what tasks the AI is performing. For instance, an employee using a generative AI tool to summarize sensitive internal documents introduces very different risks than someone using the same tool to draft marketing content.
For security and compliance leaders, the EU AI Act represents just one piece of a broader AI governance puzzle that will dominate 2025.
The next 12-18 months will require sustained focus and collaboration across security, compliance, and technology teams to stay ahead of these developments.

The Global Partnership on Artificial Intelligence (GPAI) is a multi-stakeholder initiative which aims to bridge the gap between theory and practice on AI by supporting cutting-edge research and applied activities on AI-related priorities.
https://gpai.ai/about/#:~:text=The%20Global%20Partnership%20on%20Artificial,activities%20on%20AI%2Drelated%20priorities.

1,005 Comments

  1. Tomi Engdahl says:

    OpenAI launches Sora video generation tool in UK amid copyright row
    ‘Sora would not exist without its training data,’ said peer Beeban Kidron, citing ‘another level of urgency’ to debate
    https://www.theguardian.com/technology/2025/feb/28/openai-sora-video-generation-uk-amid-copyright-row

    Reply
  2. Tomi Engdahl says:

    Intel touts new Xeon chip’s AI power in bid to fend off AMD, ARM advances
    As data center processors from AMD and ARM continue eating into Intel’s franchise, the chip giant promotes the lower TCO of its latest server chips.
    https://www.zdnet.com/article/intel-touts-new-xeon-chips-ai-power-in-bid-to-fend-off-amd-arm-advances/

    Intel on Monday revealed new versions of its Xeon 6 server processors, in a bid to proliferate AI processing throughout its data center product line as it fends off incursions on two fronts — from AMD and ARM Holdings.

    The new processors, dubbed Xeon 6 6500 and 6700, extend the chip giant’s product lineup first announced in September 2024. Code-named “Granite Rapids,” the Xeon 6 chips feature what are called performance cores, dozens of individual computing elements designed to deliver the most powerful computing activity in the company’s chip lineup.

    Reply
  3. Tomi Engdahl says:

    Anthropic previews Claude Code: agentic coding, capable but costly
    https://devclass.com/2025/02/27/anthropic-previews-claude-code-agentic-coding-capable-but-costly/

    Anthropic has released a “beta research preview” of Claude Code, an agentic coding tool which uses the Claude 3.7 Sonnet model to automate tasks including adding features and tests, creating pull requests, and generating documentation.

    Claude Code uses the command line for its user interface, rather than integrating with an IDE or editor via a plugin. Anthropic engineer Erik Schluntz explained that “because Claude Code is just in the terminal, you can bring it into any IDE (or server) you want.”

    He added that “Claude Code is super popular internally at Anthropic. Most engineers like to use it together with an IDE like Cursor, Windsurf, VS Code, Zed, Xcode, etc. Personally I usually start most coding tasks in Code, then move to an IDE for finishing touches.”

    Reply
  4. Tomi Engdahl says:

    Nvidia CEO: ‘I would encourage everybody’ to use this type of AI—it’s free and can teach you ‘anything you like’
    https://www.cnbc.com/2025/02/26/nvidia-ceo-jensen-huang-everybody-should-use-this-free-type-of-ai.html

    Nvidia CEO Jensen Huang has some advice, and he says that nearly everyone would benefit by following it: Get an AI tutor.

    “I have a personal [artificial intelligence] tutor with me all of the time. And I think that feeling should be universal,” Huang told journalist Cleo Abram’s YouTube interview show “Huge Conversations,” in an episode that aired last month.

    Reply
  5. Tomi Engdahl says:

    Open Source Initiative defends disallowing board candidate after timezone SNAFU
    Here’s another thing AI can do: Cause conflict around whether it’s compatible with the very idea of open source
    https://www.theregister.com/2025/02/28/osi_election_ai_drama/

    AI policy drama
    The election row is taking place amid community dissent over the organization’s Open Source Artificial Intelligence Definition (OSAID) that debuted last October.

    Bruce Perens, who wrote the original Open Source Definition and parted ways with OSI in 2020, denounced the idea of the OSAID last year. He believes AI is incompatible with the open software movement because “its output is inherently plagiarism.”

    “The Open Source AI Definition requires less of AI than the original Open Source Definition requires of any other form of software,” said Perens, pointing to a rebuttal he penned on the subject titled: “My contention is that it isn’t Open Source and is Openwashing.”

    Their platform calls for the repeal the OSAID and to make several other changes.

    “[T]he OSI’s push to adopt its Open Source AI Definition (OSAID) has been a mistake,” their joint shared platform statement states. “The OSI acted too quickly to impose an overly ambitious policy compromise on the community. OSAID undeniably created a rift in the FOSS community; that rift seriously damaged the OSI’s reputation, authority and influence. Meanwhile, OSAID shows no signs of having any positive policy influence on machine learning practitioners, the FOSS community, or regulators.”

    Reply
  6. Tomi Engdahl says:

    Tekoäly tajusi keskustelevansa toisen tekoälyn kanssa – hylkäsivät tehottoman ihmiskielen
    27.2.202521:01
    Tekoälyn ei ole tarvetta puhua ihmisen tavoin silloin, kun keskustelukumppanina on toinen tekoäly. Gibberlink-teknologia tehostaa kahden tai useamman tekoälyn välisiä keskusteluita.
    https://www.mikrobitti.fi/uutiset/tekoaly-tajusi-keskustelevansa-toisen-tekoalyn-kanssa-hylkasivat-tehottoman-ihmiskielen/9c4b12df-f110-4ac5-b02e-2d57ffdf2ac1

    Ohjelmistoyhtiö Elevenlabsin Lontoossa järjestämän Hackathon-tapahtuman voitto meni Anton Pidkuikolle ja Boris Starkoville, joiden kehittämällä Gibberlink-teknologialla tekoäly voi keskustella toisen tekoälyn kanssa huomattavasti tehokkaammin kuin ihmismäisemmillä kielillä olisi mahdollista.

    Pidkuiko ja Starkov tutkivat perinteisen kielen rajoituksia, ja tulivat lopputulokseen, ettei kahden tekoälyn ole mitään syytä keskustella puhuttua kieltä käyttäen, koska kommunikaation voi hoitaa tehokkaamminkin.

    ”Ihmismäisen puheen tuottaminen on laskentatehon, rahan, ajan ja ympäristön tuhlaamista. Sen sijaan tekoälyn tulisi vaihtaa tehokkaampaan protokollaan, kun se havaitsee vastapuolenkin olevan tekoäly”, Starkov kirjoittaa Linkedinissä.

    Kaksikko yhdisti Elevenlabsin keskustelevaa tekoälyteknologiaa äänen avulla tapahtuvan tiedonsiirron avoimen lähdekoodin ggwave-kirjastoon. He rakensivat järjestelmän, jonka avulla tekoälyavustaja voi tunnistaa, milloin se keskustelee toisen tekoälyn kanssa.

    Kun näin tapahtuu, kommunikoivat tekoälyagentit puhuttujen sanojen sijaan siirtämällä jäsenneltyä dataa moduloitujen ääniaaltojen avulla. Kommunikointi on Elevenlabsin mukaan näin jopa 80 prosenttia aiempaa tehokkaampaa.

    Reply
  7. Tomi Engdahl says:

    https://simonwillison.net/2025/Feb/28/llm-schemas/
    Structured data extraction from unstructured content using LLM schemas

    Reply
  8. Tomi Engdahl says:

    There’s Something Very Weird About This $30 Billion AI Startup by a Man Who Said Neural Networks May Already Be Conscious
    This is wild, even for venture capitalists
    https://futurism.com/ilya-sutskever-safe-superintelligence-product

    Reply
  9. Tomi Engdahl says:

    What’s next for Microsoft’s Semantic Kernel
    analysis
    Feb 27, 2025
    9 mins
    Artificial Intelligence
    Development Libraries and Frameworks
    Microsoft .NET

    Microsoft steers its agentic AI development kit toward complex workflows using the Agent Framework and no-code agent development using AutoGen.

    https://www.infoworld.com/article/3833938/whats-next-for-microsofts-semantic-kernel.html

    Reply
  10. Tomi Engdahl says:

    Speech to Text on the ESP32 with Gemini
    Learn how to use an ESP32 to save a short speech clip to an SD card, then transcribe it via the Gemini API.
    https://www.hackster.io/PaulTR/speech-to-text-on-the-esp32-with-gemini-6127da

    Reply
  11. Tomi Engdahl says:

    https://www.calcalistech.com/ctechnews/article/ybba8gx5n
    AI won’t replace developers—but it will change who gets hired
    AI is transforming coding from a technical task into a multidisciplinary challenge.

    Reply
  12. Tomi Engdahl says:

    10 ways machine learning projects fail
    AI hallucinations
    Model bias
    Legal and ethical risks
    Poor data quality
    Model overfitting and underfitting
    Legacy system integration issues
    Performance and scalability issues
    Lack of transparency and trust
    Not enough domain-specific knowledge
    Machine learning skills shortage

    https://www.infoworld.com/article/3812589/10-machine-learning-mistakes-and-how-to-avoid-them.html

    Reply
  13. Tomi Engdahl says:

    Demo: Using Claude 3.7 Sonnet with GitHub Copilot
    https://www.youtube.com/watch?v=LHVLyqc_WBM

    Reply
  14. Tomi Engdahl says:

    Nvidian tulosjulkistus pitää markkinat varpaillaan – Tämä on sen tärkein kysymys
    Nvidia julkistaa tuloksensa tänään keskiviikkona markkinoiden sulkeutumisen jälkeen. Analyytikot odottavat sirujätin kasvattaneen tulostaan nelosneljänneksellä
    https://www.arvopaperi.fi/uutiset/nvidian-tulosjulkistus-pitaa-markkinat-varpaillaan-tama-on-sen-tarkein-kysymys/99cbbd11-27fb-4d8d-9159-8d0c7134ef48

    Reply
  15. Tomi Engdahl says:

    computers have traditionally required extremely specific instructions in order to execute.

    The state of AI models available to us today has changed that. We now have access to computers that can reason, and make judgement calls in lieu of specifying every edge case under the sun.

    That’s what AI agents are all about.

    Today we’re excited to share a few announcements on how we’re making it even easier to build AI agents on Cloudflare, including:

    agents-sdk — a new JavaScript framework for building AI agents

    Updates to Workers AI: structured outputs, tool calling, and longer context windows for Workers AI, Cloudflare’s serverless inference engine

    An update to the workers-ai-provider for the AI SDK

    https://blog.cloudflare.com/build-ai-agents-on-cloudflare/

    Reply
  16. Tomi Engdahl says:

    https://www.anthropic.com/news/claude-3-7-sonnet
    Claude 3.7 Sonnet and Claude Code

    Today, we’re announcing Claude 3.7 Sonnet1, our most intelligent model to date and the first hybrid reasoning model on the market. Claude 3.7 Sonnet can produce near-instant responses or extended, step-by-step thinking that is made visible to the user. API users also have fine-grained control over how long the model can think for.

    Claude 3.7 Sonnet shows particularly strong improvements in coding and front-end web development. Along with the model, we’re also introducing a command line tool for agentic coding, Claude Code. Claude Code is available as a limited research preview, and enables developers to delegate substantial engineering tasks to Claude directly from their terminal.

    Reply
  17. Tomi Engdahl says:

    China’s ports adopt DeepSeek AI model to streamline operations, protect data
    The domestic tech success story is already seeing practical application in several of China’s busiest harbours
    https://www.scmp.com/economy/china-economy/article/3299449/chinas-ports-adopt-deepseek-ai-model-streamline-operations-protect-data

    Reply
  18. Tomi Engdahl says:

    Meta AI Releases the Video Joint Embedding Predictive Architecture (V-JEPA) Model: A Crucial Step in Advancing Machine Intelligence
    https://www.marktechpost.com/2025/02/22/meta-ai-releases-the-video-joint-embedding-predictive-architecture-v-jepa-model-a-crucial-step-in-advancing-machine-intelligence/

    Reply
  19. Tomi Engdahl says:

    NVIDIA Jetson Orin Nano Super: Powering DeepSeek R1 70B Inference at the Edge!
    https://www.storagereview.com/review/nvidia-jetson-orin-nano-super-powering-deepseek-r1-70b-inference-at-the-edge

    The Jetson Orin Nano Super is a compact computing powerhouse that brings sophisticated AI capabilities to edge devices. It blends performance with affordability and solid integration options, making it an ideal candidate for prototyping and commercial product development. Whether employed in robotics kits or integrated into larger machinery, its flexible design allows engineers to deploy AI in scenarios that demand efficiency and low power consumption – for just $249.

    Reply
  20. Tomi Engdahl says:

    https://locales.ai/
    Translation, Localization & Global Expansion with AI

    Take Your App, Website,

    or Services Global in Minutes

    Reply
  21. Tomi Engdahl says:

    Large Language Models Pose Growing Security Risks
    Companies must cope with risks on their own, at least for now. Government isn’t ready
    https://www.wsj.com/articles/large-language-models-pose-growing-security-risks-f3c84ea9

    More powerful and pervasive large language models are creating a new cybersecurity challenge for companies.

    The risks posed by LLMs, a form of generative artificial intelligence that communicates through language in a humanlike way, are already manifold. There is, for example, a danger that sensitive corporate or personal information inadvertently or deliberately will be exposed to models widely accessible to the public. There is also a possibility models can bring unsafe code or data into a company.

    Reply
  22. Tomi Engdahl says:

    OpenAI Researchers Find That Even the Best AI Is “Unable To Solve the Majority” of Coding Problems
    Maybe these AIs should learn to code.
    https://futurism.com/openai-researchers-coding-fail

    Reply
  23. Tomi Engdahl says:

    BlackBastaGPT – A ChatGPT Powered Tool to Uncover Ransomware Group Tactics
    https://cybersecuritynews.com/blackbastagpt-chatgpt-powered-tool/#google_vignette

    Reply
  24. Tomi Engdahl says:

    The Open Source AI Foundation has launched a $10 million ad campaign aimed at convincing policymakers and others of open source AI’s benefits, Axios has learned.

    Why it matters: There is a spirited debate in both technology and policy circles as to whether open source AI makes the technology safer or less secure.
    https://www.axios.com/2025/02/21/open-source-ai-10-million-ad-campaign

    Reply

Leave a Comment

Your email address will not be published. Required fields are marked *

*

*