New approaches for embedded development

The idea for this posting started when I read New approaches to dominate in embedded development article. Then I found some ther related articles and here is the result: long article.

Embedded devices, or embedded systems, are specialized computer systems that constitute components of larger electromechanical systems with which they interface. The advent of low-cost wireless connectivity is altering many things in embedded development: With a connection to the Internet, an embedded device can gain access to essentially unlimited processing power and memory in cloud service – and at the same time you need to worry about communication issues like breaks connections, latency and security issues.

Those issues are espcecially in the center of the development of popular Internet of Things device and adding connectivity to existing embedded systems. All this means that the whole nature of the embedded development effort is going to change. A new generation of programmers are already making more and more embedded systems. Rather than living and breathing C/C++, the new generation prefers more high-level, abstract languages (like Java, Python, JavaScript etc.). Instead of trying to craft each design to optimize for cost, code size, and performance, the new generation wants to create application code that is separate from an underlying platform that handles all the routine details. Memory is cheap, so code size is only a minor issue in many applications.

Historically, a typical embedded system has been designed as a control-dominated system using only a state-oriented model, such as FSMs. However, the trend in embedded systems design in recent years has been towards highly distributed architectures with support for concurrency, data and control flow, and scalable distributed computations. For example computer networks, modern industrial control systems, electronics in modern car,Internet of Things system fall to this category. This implies that a different approach is necessary.

Companies are also marketing to embedded developers in new ways. Ultra-low cost development boards to woo makers, hobbyists, students, and entrepreneurs on a shoestring budget to a processor architecture for prototyping and experimentation have already become common.If you look under the hood of any connected embedded consumer or mobile device, in addition to the OS you will find a variety of middleware applications. As hardware becomes powerful and cheap enough that the inefficiencies of platform-based products become moot. Leaders with Embedded systems development lifecycle management solutions speak out on new approaches available today in developing advanced products and systems.

Traditional approaches

C/C++

Tradionally embedded developers have been living and breathing C/C++. For a variety of reasons, the vast majority of embedded toolchains are designed to support C as the primary language. If you want to write embedded software for more than just a few hobbyist platforms, your going to need to learn C. Very many embedded systems operating systems, including Linux Kernel, are written using C language. C can be translated very easily and literally to assembly, which allows programmers to do low level things without the restrictions of assembly. When you need to optimize for cost, code size, and performance the typical choice of language is C. Still C is today used for maximum efficiency instead of C++.

C++ is very much alike C, with more features, and lots of good stuff, while not having many drawbacks, except fror it complexity. The had been for years suspicion C++ is somehow unsuitable for use in small embedded systems. At some time many 8- and 16-bit processors were lacking a C++ compiler, that may be a concern, but there are now 32-bit microcontrollers available for under a dollar supported by mature C++ compilers.Today C++ is used a lot more in embedded systems. There are many factors that may contribute to this, including more powerful processors, more challenging applications, and more familiarity with object-oriented languages.

And if you use suitable C++ subset for coding, you can make applications that work even on quite tiny processors, let the Arduino system be an example of that: You’re writing in C/C++, using a library of functions with a fairly consistent API. There is no “Arduino language” and your “.ino” files are three lines away from being standard C++.

Today C++ has not displaced C. Both of the languages are widely used, sometimes even within one system – for example in embedded Linux system that runs C++ application. When you write a C or C++ programs for modern Embedded Linux you typically use GCC compiler toolchain to do compilation and make file to manage compilation process.

Most organization put considerable focus on software quality, but software security is different. When the security is very much talked about topic todays embedded systems, the security of the programs written using C/C++ becomes sometimes a debated subject. Embedded development presents the challenge of coding in a language that’s inherently insecure; and quality assurance does little to ensure security. The truth is that majority of today’s Internet connected systems have their networking fuctionality written using C even of the actual application layer is written using some other methods.

Java

Java is a general-purpose computer programming language that is concurrent, class-based and object-oriented.The language derives much of its syntax from C and C++, but it has fewer low-level facilities than either of them. Java is intended to let application developers “write once, run anywhere” (WORA), meaning that compiled Java code can run on all platforms that support Java without the need for recompilation.Java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of computer architecture. Java is one of the most popular programming languages in use, particularly for client-server web applications. In addition to those it is widely used in mobile phones (Java apps in feature phones,) and some embedded applications. Some common examples include SIM cards, VOIP phones, Blu-ray Disc players, televisions, utility meters, healthcare gateways, industrial controls, and countless other devices.

Some experts point out that Java is still a viable option for IoT programming. Think of the industrial Internet as the merger of embedded software development and the enterprise. In that area, Java has a number of key advantages: first is skills – there are lots of Java developers out there, and that is an important factor when selecting technology. Second is maturity and stability – when you have devices which are going to be remotely managed and provisioned for a decade, Java’s stability and care about backwards compatibility become very important. Third is the scale of the Java ecosystem – thousands of companies already base their business on Java, ranging from Gemalto using JavaCard on their SIM cards to the largest of the enterprise software vendors.

Although in the past some differences existed between embedded Java and traditional PC based Java solutions, the only difference now is that embedded Java code in these embedded systems is mainly contained in constrained memory, such as flash memory. A complete convergence has taken place since 2010, and now Java software components running on large systems can run directly with no recompilation at all on design-to-cost mass-production devices (consumers, industrial, white goods, healthcare, metering, smart markets in general,…) Java for embedded devices (Java Embedded) is generally integrated by the device manufacturers. It is NOT available for download or installation by consumers. Originally Java was tightly controlled by Sun (now Oracle), but in 2007 Sun relicensed most of its Java technologies under the GNU General Public License. Others have also developed alternative implementations of these Sun technologies, such as the GNU Compiler for Java (bytecode compiler), GNU Classpath (standard libraries), and IcedTea-Web (browser plugin for applets).

My feelings with Java is that if your embedded systems platform supports Java and you know hot to code Java, then it could be a good tool. If your platform does not have ready Java support, adding it could be quite a bit of work.

 

Increasing trends

Databases

Embedded databases are coming more and more to the embedded devices. If you look under the hood of any connected embedded consumer or mobile device, in addition to the OS you will find a variety of middleware applications. One of the most important and most ubiquitous of these is the embedded database. An embedded database system is a database management system (DBMS) which is tightly integrated with an application software that requires access to stored data, such that the database system is “hidden” from the application’s end-user and requires little or no ongoing maintenance.

There are many possible databases. First choice is what kind of database you need. The main choices are SQL databases and simpler key-storage databases (also called NoSQL).

SQLite is the Database chosen by virtually all mobile operating systems. For example Android and iOS ship with SQLite. It is also built into for example Firefox web browser. It is also often used with PHP. So SQLite is probably a pretty safe bet if you need relational database for an embedded system that needs to support SQL commands and does not need to store huge amounts of data (no need to modify database with millions of lines of data).

If you do not need relational database and you need very high performance, you need probably to look somewhere else.Berkeley DB (BDB) is a software library intended to provide a high-performance embedded database for key/value data. Berkeley DB is written in Cwith API bindings for many languages. BDB stores arbitrary key/data pairs as byte arrays. There also many other key/value database systems.

RTA (Run Time Access) gives easy runtime access to your program’s internal structures, arrays, and linked-lists as tables in a database. When using RTA, your UI programs think they are talking to a PostgreSQL database (PostgreSQL bindings for C and PHP work, as does command line tool psql), but instead of normal database file you are actually accessing internals of your software.

Software quality

Building quality into embedded software doesn’t happen by accident. Quality must be built-in from the beginning. Software startup checklist gives quality a head start article is a checklist for embedded software developers to make sure they kick-off their embedded software implementation phase the right way, with quality in mind

Safety

Traditional methods for achieving safety properties mostly originate from hardware-dominated systems. Nowdays more and more functionality is built using software – including safety critical functions. Software-intensive embedded systems require new approaches for safety. Embedded Software Can Kill But Are We Designing Safely?

IEC, FDA, FAA, NHTSA, SAE, IEEE, MISRA, and other professional agencies and societies work to create safety standards for engineering design. But are we following them? A survey of embedded design practices leads to some disturbing inferences about safety.Barr Group’s recent annual Embedded Systems Safety & Security Survey indicate that we all need to be concerned: Only 67 percent are designing to relevant safety standards, while 22 percent stated that they are not—and 11 percent did not even know if they were designing to a standard or not.

If you were the user of a safety-critical embedded device and learned that the designers had not followed best practices and safety standards in the design of the device, how worried would you be? I know I would be anxious, and quite frankly. This is quite disturbing.

Security

The advent of low-cost wireless connectivity is altering many things in embedded development – it has added to your list of worries need to worry about communication issues like breaks connections, latency and security issues. Understanding security is one thing; applying that understanding in a complete and consistent fashion to meet security goals is quite another. Embedded development presents the challenge of coding in a language that’s inherently insecure; and quality assurance does little to ensure security.

Developing Secure Embedded Software white paper  explains why some commonly used approaches to security typically fail:

MISCONCEPTION 1: SECURITY BY OBSCURITY IS A VALID STRATEGY
MISCONCEPTION 2: SECURITY FEATURES EQUAL SECURE SOFTWARE
MISCONCEPTION 3: RELIABILITY AND SAFETY EQUAL SECURITY
MISCONCEPTION 4: DEFENSIVE PROGRAMMING GUARANTEES SECURITY

Many organizations are only now becoming aware of the need to incorporate security into their software development lifecycle.

Some techniques for building security to embedded systems:

Use secure communications protocols and use VPN to secure communications
The use of Public Key Infrastructure (PKI) for boot-time and code authentication
Establishing a “chain of trust”
Process separation to partition critical code and memory spaces
Leveraging safety-certified code
Hardware enforced system partitioning with a trusted execution environment
Plan the system so that it can be easily and safely upgraded when needed

Flood of new languages

Rather than living and breathing C/C++, the new generation prefers more high-level, abstract languages (like Java, Python, JavaScript etc.). So there is a huge push to use interpreted and scripting also in embedded systems. Increased hardware performance on embedded devices combined with embedded Linux has made the use of many scripting languages good tools for implementing different parts of embedded applications (for example web user interface). Nowadays it is common to find embedded hardware devices, based on Raspberry Pi for instance, that are accessible via a network, run Linux and come with Apache and PHP installed on the device.  There are also many other relevant languages

One workable solution, especially for embedded Linux systems is that part of the activities organized by totetuettu is a C program instead of scripting languages ​​(Scripting). This enables editing operation simply script files by editing without the need to turn the whole system software again.  Scripting languages ​​are also tools that can be implemented, for example, a Web user interface more easily than with C / C ++ language. An empirical study found scripting languages (such as Python) more productive than conventional languages (such as C and Java) for a programming problem involving string manipulation and search in a dictionary.

Scripting languages ​​have been around for a couple of decades Linux and Unix server world standard tools. the proliferation of embedded Linux and resources to merge systems (memory, processor power) growth has made them a very viable tool for many embedded systems – for example, industrial systems, telecommunications equipment, IoT gateway, etc . Some of the command language is suitable for up well even in quite small embedded environments.
I have used with embedded systems successfully mm. Bash, AWK, PHP, Python and Lua scripting languages. It works really well and is really easy to make custom code quickly .It doesn’t require a complicated IDE; all you really need is a terminal – but if you want there are many IDEs that can be used.
High-level, dynamically typed languages, such as Python, Ruby and JavaScript. They’re easy—and even fun—to use. They lend themselves to code that easily can be reused and maintained.

There are some thing that needs to be considered when using scripting languages. Sometimes lack of static checking vs a regular compiler can cause problems to be thrown at run-time. But it is better off practicing “strong testing” than relying on strong typing. Other ownsides of these languages is that they tend to execute more slowly than static languages like C/C++, but for very many aplications they are more than adequate. Once you know your way around dynamic languages, as well the frameworks built in them, you get a sense of what runs quickly and what doesn’t.

Bash and other shell scipting

Shell commands are the native language of any Linux system. With the thousands of commands available for the command line user, how can you remember them all? The answer is, you don’t. The real power of the computer is its ability to do the work for you – the power of the shell script is the way to easily to automate things by writing scripts. Shell scripts are collections of Linux command line commands that are stored in a file. The shell can read this file and act on the commands as if they were typed at the keyboard.In addition to that shell also provides a variety of useful programming features that you are familar on other programming langauge (if, for, regex, etc..). Your scripts can be truly powerful. Creating a script extremely straight forward: It can be created by opening a separate editor such or you can do it through a terminal editor such as VI (or preferably some else more user friendly terminal editor). Many things on modern Linux systems rely on using scripts (for example starting and stopping different Linux services at right way).

One of the most useful tools when developing from within a Linux environment is the use of shell scripting. Scripting can help aid in setting up environment variables, performing repetitive and complex tasks and ensuring that errors are kept to a minimum. Since scripts are ran from within the terminal, any command or function that can be performed manually from a terminal can also be automated!

The most common type of shell script is a bash script. Bash is a commonly used scripting language for shell scripts. In BASH scripts (shell scripts written in BASH) users can use more than just BASH to write the script. There are commands that allow users to embed other scripting languages into a BASH script.

There are also other shells. For example many small embedded systems use BusyBox. BusyBox providesis software that provides several stripped-down Unix tools in a single executable file (more than 300 common command). It runs in a variety of POSIX environments such as Linux, Android and FreeeBSD. BusyBox become the de facto standard core user space toolset for embedded Linux devices and Linux distribution installers.

Shell scripting is a very powerful tool that I used a lot in Linux systems, both embedded systems and servers.

Lua

Lua is a lightweight  cross-platform multi-paradigm programming language designed primarily for embedded systems and clients. Lua was originally designed in 1993 as a language for extending software applications to meet the increasing demand for customization at the time. It provided the basic facilities of most procedural programming languages. Lua is intended to be embedded into other applications, and provides a C API for this purpose.

Lua has found many uses in many fields. For example in video game development, Lua is widely used as a scripting language by game programmers. Wireshark network packet analyzer allows protocol dissectors and post-dissector taps to be written in Lua – this is a good way to analyze your custom protocols.

There are also many embedded applications. LuCI, the default web interface for OpenWrt, is written primarily in Lua. NodeMCU is an open source hardware platform, which can run Lua directly on the ESP8266 Wi-Fi SoC. I have tested NodeMcu and found it very nice system.

PHP

PHP is a server-side HTML embedded scripting language. It provides web developers with a full suite of tools for building dynamic websites but can also be used as a general-purpose programming language. Nowadays it is common to find embedded hardware devices, based on Raspberry Pi for instance, that are accessible via a network, run Linux and come with Apache and PHP installed on the device. So on such enviroment is a good idea to take advantage of those built-in features for the applications they are good – for building web user interface. PHP is often embedded into HTML code, or it can be used in combination with various web template systems, web content management system and web frameworks. PHP code is usually processed by a PHP interpreter implemented as a module in the web server or as a Common Gateway Interface (CGI) executable.

Python

Python is a widely used high-level, general-purpose, interpreted, dynamic programming language. Its design philosophy emphasizes code readability. Python interpreters are available for installation on many operating systems, allowing Python code execution on a wide variety of systems. Many operating systems include Python as a standard component; the language ships for example with most Linux distributions.

Python is a multi-paradigm programming language: object-oriented programming and structured programming are fully supported, and there are a number of language features which support functional programming and aspect-oriented programming,  Many other paradigms are supported using extensions, including design by contract and logic programming.

Python is a remarkably powerful dynamic programming language that is used in a wide variety of application domains. Since 2003, Python has consistently ranked in the top ten most popular programming languages as measured by the TIOBE Programming Community Index. Large organizations that make use of Python include Google, Yahoo!, CERN, NASA. Python is used successfully in thousands of real world business applications around globally, including many large and mission-critical systems such as YouTube.com and Google.com.

Python was designed to be highly extensible. Libraries like NumPy, SciPy and Matplotlib allow the effective use of Python in scientific computing. Python is intended to be a highly readable language. Python can also be embedded in existing applications and hasbeen successfully embedded in a number of software products as a scripting language. Python can serve as a scripting language for web applications, e.g., via mod_wsgi for the Apache web server.

Python can be used in embedded, small or minimal hardware devices. Some modern embedded devices have enough memory and a fast enough CPU to run a typical Linux-based environment, for example, and running CPython on such devices is mostly a matter of compilation (or cross-compilation) and tuning. Various efforts have been made to make CPython more usable for embedded applications.

For more limited embedded devices, a re-engineered or adapted version of CPython, might be appropriateExamples of such implementations include the following: PyMite, Tiny Python, Viper. Sometimes the embedded environment is just too restrictive to support a Python virtual machine. In such cases, various Python tools can be employed for prototyping, with the eventual application or system code being generated and deployed on the device. Also MicroPython and tinypy have been ported Python to various small microcontrollers and architectures. Real world applications include Telit GSM/GPRS modules that allow writing the controlling application directly in a high-level open-sourced language: Python.

Python on embedded platforms? It is quick to develop apps, quick to debug – really easy to make custom code quickly. Sometimes lack of static checking vs a regular compiler can cause problems to be thrown at run-time. To avoid those try to have 100% test coverage. pychecker is a very useful too also which will catch quite a lot of common errors. The only downsides for embedded work is that sometimes python can be slow and sometimes it uses a lot of memory (relatively speaking). An empirical study found scripting languages (such as Python) more productive than conventional languages (such as C and Java) for a programming problem involving string manipulation and search in a dictionary. Memory consumption was often “better than Java and not much worse than C or C++”.

JavaScript and node.js

JavaScript is a very popular high-level language. Love it or hate it, JavaScript is a popular programming language for many, mainly because it’s so incredibly easy to learn. JavaScript’s reputation for providing users with beautiful, interactive websites isn’t where its usefulness ends. Nowadays, it’s also used to create mobile applications, cross-platform desktop software, and thanks to Node.js, it’s even capable of creating and running servers and databases!  There is huge community of developers. JavaScript is a high-level language.

Its event-driven architecture fits perfectly with how the world operates – we live in an event-driven world. This event-driven modality is also efficient when it comes to sensors.

Regardless of the obvious benefits, there is still, understandably, some debate as to whether JavaScript is really up to the task to replace traditional C/C++ software in Internet connected embedded systems.

It doesn’t require a complicated IDE; all you really need is a terminal.

JavaScript is a high-level language. While this usually means that it’s more human-readable and therefore more user-friendly, the downside is that this can also make it somewhat slower. Being slower definitely means that it may not be suitable for situations where timing and speed are critical.

JavaScript is already in embedded boards. You can run JavaScipt on Raspberry Pi and BeagleBone. There are also severa other popular JavaScript-enabled development boards to help get you started: The Espruino is a small microcontroller that runs JavaScript. The Tessel 2 is a development board that comes with integrated wi-fi, an ethernet port, two USB ports, and companion source library downloadable via the Node Package Manager. The Kinoma Create, dubbed the “JavaScript powered Internet of Things construction kit.”The best part is that, depending on the needs of your device, you can even compile your JavaScript code into C!

JavaScript for embedded systems is still in its infancy, but we suspect that some major advancements are on the horizon.We for example see a surprising amount of projects using Node.js.Node.js is an open-source, cross-platform runtime environment for developing server-side Web applications. Node.js has an event-driven architecture capable of asynchronous I/O that allows highly scalable servers without using threading, by using a simplified model of event-driven programming that uses callbacks to signal the completion of a task. The runtime environment interprets JavaScript using Google‘s V8 JavaScript engine.Node.js allows the creation of Web servers and networking tools using JavaScript and a collection of “modules” that handle various core functionality. Node.js’ package ecosystem, npm, is the largest ecosystem of open source libraries in the world. Modern desktop IDEs provide editing and debugging features specifically for Node.js applications

JXcore is a fork of Node.js targeting mobile devices and IoTs. JXcore is a framework for developing applications for mobile and embedded devices using JavaScript and leveraging the Node ecosystem (110,000 modules and counting)!

Why is it worth exploring node.js development in an embedded environment? JavaScript is a widely known language that was designed to deal with user interaction in a browser.The reasons to use Node.js for hardware are simple: it’s standardized, event driven, and has very high productivity: it’s dynamically typed, which makes it faster to write — perfectly suited for getting a hardware prototype out the door. For building a complete end-to-end IoT system, JavaScript is very portable programming system. Typically an IoT projects require “things” to communicate with other “things” or applications. The huge number of modules available in Node.js makes it easier to generate interfaces – For example, the HTTP module allows you to create easily an HTTP server that can easily map the GET method specific URLs to your software function calls. If your embedded platform has ready made Node.js support available, you should definately consider using it.

Future trends

According to New approaches to dominate in embedded development article there will be several camps of embedded development in the future:

One camp will be the traditional embedded developer, working as always to craft designs for specific applications that require the fine tuning. These are most likely to be high-performance, low-volume systems or else fixed-function, high-volume systems where cost is everything.

Another camp might be the embedded developer who is creating a platform on which other developers will build applications. These platforms might be general-purpose designs like the Arduino, or specialty designs such as a virtual PLC system.

This third camp is likely to become huge: Traditional embedded development cannot produce new designs in the quantities and at the rate needed to deliver the 50 billion IoT devices predicted by 2020.

Transition will take time. The enviroment is different than computer and mobile world. There are too many application areas with too widely varying requirements for a one-size-fits-all platform to arise.

But the shift will happen as hardware becomes powerful and cheap enough that the inefficiencies of platform-based products become moot.

 

Sources

Most important information sources:

New approaches to dominate in embedded development

A New Approach for Distributed Computing in Embedded Systems

New Approaches to Systems Engineering and Embedded Software Development

Lua (programming language)

Embracing Java for the Internet of Things

Node.js

Wikipedia Node.js

Writing Shell Scripts

Embedded Linux – Shell Scripting 101

Embedded Linux – Shell Scripting 102

Embedding Other Languages in BASH Scripts

PHP Integration with Embedded Hardware Device Sensors – PHP Classes blog

PHP

Python (programming language)

JavaScript: The Perfect Language for the Internet of Things (IoT)

Node.js for Embedded Systems

Embedded Python

MicroPython – Embedded Pytho

Anyone using Python for embedded projects?

Telit Programming Python

JavaScript: The Perfect Language for the Internet of Things (IoT)

MICROCONTROLLERS AND NODE.JS, NATURALLY

Node.js for Embedded Systems

Why node.js?

Node.JS Appliances on Embedded Linux Devices

The smartest way to program smart things: Node.js

Embedded Software Can Kill But Are We Designing Safely?

DEVELOPING SECURE EMBEDDED SOFTWARE

 

 

 

1,727 Comments

  1. Tomi Engdahl says:

    https://etn.fi/index.php/new-products/16918-kontron-tuo-edullista-tehoa-vaativiin-sovelluksiin

    Kontron on julkistanut VX6011-S:n, uuden sukupolven yhden kortin 6U VPX -ytietokoneen, joka hyödyntää 11. sukupolven Intel SoC -teknologiaa ja sisältää MXM-laajennuspaikan. Kortti tarjoaa tehokkaan ja energiatehokkaan ratkaisun puolustus-, ilmailu-, kuljetus- ja teollisuusautomaatioaloille.

    VX6011-S perustuu Intel Core i7-1185GRE -neliydinsuorittimeen, joka tarjoaa erinomaisen suorituskyvyn tekoälykiihdytysteknologialla (VNNI), kaksinkertaisella signaalinkäsittelyteholla (AVX-512) ja Gen12-grafiikkamoottorilla. Lisäksi MXM- tai XMC-mezzanine-paikka mahdollistaa lisätoimintojen, kuten GPU-korttien, integroinnin joustavasti.

    Reply
  2. Tomi Engdahl says:

    Etävalvonta mullistaa terveydenhuollon
    https://etn.fi/index.php/new-products/98-in-focus/16904-etaevalvonta-mullistaa-terveydenhuollon

    Digitaalinen murros asettaa käyttäjän ja potilaan roolit terveydenhuollon vallankumouksen keskiöön. Digitaalisessa terveydenhuollossa etäseuranta on suunniteltu mittaamaan elintoimintoja ja muita keskeisiä parametreja käyttämällä ei-invasiivisia laitteita, jotka siirtävät potilastiedot langattomasti terveydenhuollon ammattilaisille tai muille terveydenhuollon sidosryhmille samalla varmistaen tietojen luottamuksellisuuden.

    Reply
  3. Tomi Engdahl says:

    ST tuo tekoälyn mikro-ohjaimille
    https://etn.fi/index.php/13-news/16939-st-tuo-tekoaelyn-mikro-ohjaimille

    STMicroelectronics on esitellyt uuden sukupolven mikro-ohjaimet, jotka mahdollistavat tekoälyn käytön edullisissa ja energiaa säästävissä kuluttaja- ja teollisuuslaitteissa. Uusi STM32N6-mikro-ohjainsarja sisältää ensimmäistä kertaa ST:n oman Neural-ART -neuroverkkoprosessorin (NPU), joka tarjoaa jopa 600-kertaisen suorituskyvyn koneoppimissovelluksille verrattuna aiempiin STM32-sarjan huippumalleihin.

    STM32N6 on suunniteltu erityisesti tekoälylaskentaan reunalaitteissa, kuten tietokonenäköön, puheentunnistukseen ja sensoridatan analysointiin. Uusi ratkaisu mahdollistaa reaaliaikaisen päätöksenteon ja vähentää pilvipalveluihin liittyviä viiveitä sekä tietoturvariskejä.

    STM32N6-mikro-ohjaimessa on ST:n Neural-ART Accelerator -prosessori, joka sisältää lähes 300 konfiguroitavaa laskentayksikköä. Tämän ansiosta mikro-ohjain saavuttaa jopa 600 miljardin operaation sekuntitehon (GOPS), mikä on huikea parannus aiempiin STM32-malleihin nähden.

    Reply
  4. Tomi Engdahl says:

    ANTIRTOS_C. Extremally Light Task Management
    ANTIRTOS_C – a native C implementation of ANTIRTOS is coming…
    aleksei-tertychnyiAleksei Tertychnyi
    https://hackaday.io/project/199046-antirtosc-extremally-light-task-management

    Reply
  5. Tomi Engdahl says:

    https://etn.fi/index.php/13-news/16949-tarkka-paikannus-kuluttaa-yhae-vaehemmaen-virtaa

    Puettavien teknologioiden kehitys saa jälleen uutta vauhtia u-bloxin julkaistessa UBX-M10150-CC GNSS-sirun, joka yhdistää markkinoiden pienimmän koon ja erittäin alhaisen virrankulutuksen. Uutuus mahdollistaa paikannuksen vain 10 milliwatin teholla, mikä pidentää akunkestoa huomattavasti ja avaa uusia mahdollisuuksia kuluttajaystävällisempien laitteiden suunnitteluun.

    Reply
  6. Tomi Engdahl says:

    The smallest Ethernet module in the world. C-Type Ethernet
    With USB-C Type, not only USB communication but also Ethernet!
    https://www.hackster.io/alan43/the-smallest-ethernet-module-in-the-world-c-type-ethernet-ecc4cf

    Reply
  7. Tomi Engdahl says:

    Energiankeruu ratkaisee IoT:n paristo-ongelmat
    https://etn.fi/index.php/tekniset-artikkelit/16956-energiankeruu-ratkaisee-iot-n-paristo-ongelmat

    Pariston haittapuolia

    Yhdysvalloissa myydään joka vuosi viitisen miljardia paristoa arvioi maan ympäristöviranomainen EPA, jonka vastuulla on muodostuvan kiinteän jätteen ja mahdollisten yllättävien jäteongelmien seuranta. Eri lähteiden mukaan Euroopassa myydään vuosittain kahdeksan miljardia paristoa. Tästä voidaan päätellä, että useita miljardeja kuivaparistoja jää pois heitettäväksi joka vuosi.

    Esimerkiksi vain noin puolet hylätyistä paristoista saadaan kierrätettyä Euroopassa yhden arvion mukaan.

    Ja samaan aikaan maailmalla otetaan käyttöön aina enemmän IoT-laitteita. Vuoteen 2022 mennessä käyttöön oli otettu 14,4 miljardia IoT-laitetta, ilmenee IoT Analytics -tutkimuslaitoksen kokoamista tiedoista ja sen ennuste on, että määrä tuplaantuu vuoteen 2027 mennessä. Niin koti- kuin teollisuuskäytössä olevien IoT-laitteiden uusimiskustannukset ovat kasvussa samoin kuin tarvittavien toimenpiteiden määräkin. Eräissä uusimmissa ja kunnianhimoisimmissa IoT-sovelluksissa on tarkoitus käyttää valtavan kokoisia anturimatriiseja valvomaan monenlaisia pyrkimyksiä maataloudesta teollisuusautomaatioon.

    Energiankeruu

    Edellä kuvattujen IoT-laitteiden voisi odottaa vaativan paristotehoa, mutta onkin osoittautunut, että monet niistä eivät kuluta sitä ollenkaan. Jotkut antureista tarvitsevat toimiakseen vain hyvin heikon virtasyötön, jota on saatavissa ympäristöstä vapaasti.

    Näissä tapauksissa houkutteleva vaihtoehto on energian keräily ympäristöstä. Peruskonseptina on kerätä energiaa joistakin luonnonilmiöistä, joissakin tapauksissa useasta energialähteestä ja muuntaa tuo energia sähköksi.

    Määritelmän mukaan aurinko- ja tuulienergia lasketaan energiakeräilyksi. Molemmista energiamuodoista on saatavissa megawattien tehoja, mutta kaukana verkon reunoilla olevien IoT-laitteiden tarve on milliwattien tai mikrowattien luokkaa, mikä on tuotettavissa monia muitakin fysikaalisia ilmiöitä hyödyntämällä.

    Energiankeruun muotoja

    Aurinkosähkö (PV) tulee olemaan varma vaihtoehto hyvin vähän tehoa kuluttavissa IoT-laitteissa.

    Nykyaikaisten PV-kennojen tehotiheydet ovat parantuneet ja ne kykenevät lataamaan niin sisällä kuin ulkona olevan ympäristön valon vaikutuksesta paristoja tai superkondensaattoriparistomoduuleja.

    Pienet lämpötilaerot saadaan käyttöön termosähköisillä generaattoreilla, joilla kerätään mikrowatteja mistä tahansa energialähteistä, joita löytyy kaikkialta niin teollisuuslaitteista kuin ihmiskehosta. Joissakin sovelluksissa voidaan lisäksi hyödyntää läsnä olevaa AC-värähtelyä osana energian keräilyä!

    Pietsosähköiset materiaalit synnyttävät energiaa muotoa muuttaessaan. Sovelluksissa kuten moottoriajoneuvoissa, joissa fyysinen liike pysyy lähes vakiona, voidaan kerätä tällä tavoin energiaa. Älykotien ja -rakennusten valaisinkytkimissä hyödynnetään tällaista pietsokineettisen energian keräilyä, minkä monet valmistajat ovatkin lisänneet osaksi liikuteltavien paristottomien kytkimien tarjontaansa.

    Muita käytettävissä olevia energian keräilyn tekniikoita ovat innovatiivisimpien yritysten käyttämät sähköiseen ja magneettiseen induktioon perustuvat verrattain suuret sähkökentät, joista kerätään energiaa anturien ja radioyhteyksien tarpeisiin kaukokohteissa.
    Ympäristön energia

    Erittäin vähällä energialla toimivien IoT-laitteiden valmistajat, jotka etsivät keinoja toteuttaa paristottomia ratkaisuja, ovat kiinnostuneita energian keräilytekniikoista osittain siksi, koska kyseisille laitteille ei ole olemassa tehonsyötön infrastruktuuria.

    on ryhdytty selvittämään langattomien tehonsyöttömenetelmien standardoinnin mahdollisuuksia.

    Kehitteillä on monia menetelmiä, joista useimmat nojautuvat alle 2,4 gigahertsin RF-energiaan. Tällä hetkellä lähimpänä kaupallistamista ovat teollisuussovelluksiin tarkoitetut laitteet, joita käytetään tuotantoautomaation koneissa, varastolaitteiden jäljittämisessä, paristottomissa omaisuuden merkintätarroissa ja elektronisissa varaston merkintätarroissa, koska näissä asennuksissa voidaan hyödyntää RF-energian siirtoon tarkoitettuja yhdyskäytäviä. Tulevaisuudessa älykodeissa jokaisella reitittimellä ja älylaitteen yhdyskäytävällä voidaan siirtää myös RF-energiaa. Markkinoille voi piankin olla tulossa erittäin pitkään toimivia sähkökäyttöisiä hammasharjoja, avainkortteja, näppäimistöjä, kuulokkeita, tietokonehiiriä ja kaikkea muuta.
    Miltä tulevaisuus näyttää?

    IoT ei kasvaisi ennustetulla nopeudella, jos se olisi aina paristoista riippuvainen. Monissa käyttökohteissa ei kuitenkaan vielä hyödynnetä täysin langattomuuden potentiaalia.

    Reply
  8. Tomi Engdahl says:

    IAR laajentaa Zephyr Linuxiin ja mikroprosessoreihin
    https://etn.fi/index.php/13-news/16932-iar-laajentaa-zephyr-linuxiin-ja-mikroprosessoreihin

    Ruotsalainen sulautettujen järjestelmien kehitystyökaluihin erikoistunut IAR Systems on ilmoittanut päivittävänsä pitkän aikavälin tavoitteitaan heijastaakseen yhtiön uutta kasvustrategiaa. Yhtiö asettaa 3–5 vuoden tavoitteekseen 20 prosentin kasvun ja vähintään 20 prosentin liikevoittomarginaalin.

    IAR:n lippulaivatuote, IAR Embedded Workbench, mukautetaan yhteensopivaksi kolmansien osapuolten ratkaisujen kanssa, mukaan lukien kaupalliset ja avoimen lähdekoodin alustat. Keskeinen osa tätä strategiaa on Linux Foundationin kehittämän Zephyr-käyttöjärjestelmän integrointi. Zephyr on suosittu käyttöjärjestelmä suurten valmistajien keskuudessa, ja sen tukeminen avaa IAR:lle uusia mahdollisuuksia.

    Ensi vuonna IAR aikoo syventää yhteistyötään merkittävien avoimen lähdekoodin ratkaisujen kanssa. Näillä panostuksilla yhtiö laajentaa tuotevalikoimaansa mikroprosessorimarkkinoille, jotka ovat huomattavasti suuremmat ja kasvavat nopeasti verrattuna perinteisiin mikro-ohjaimiin. Tämä mahdollistaa nopean reagoinnin uusiin innovaatioihin, kuten Rust-ohjelmointikieleen.

    Reply
  9. Tomi Engdahl says:

    What’s LVGL, and how it works in embedded designs
    https://www.edn.com/whats-lvgl-and-how-it-works-in-embedded-designs/#google_vignette

    Light and Versatile Graphics Library (LVGL) is steadily making inroads in the graphics realm by efficiently facilitating graphical user interface (GUI) designs in small, resource-constrained, and battery-powered devices such as wearables, e-bikes, navigation systems, instrument clusters, medical gadgets, and more.

    Graphics IP suppliers are increasingly partnering with LVGL to optimize GPU performance and expand graphic processing capabilities for a wide range of embedded applications. But who’s LVGL? It’s the company behind the free and open-source graphics library for embedded systems; it helps developers create GUIs for microcontroller units (MCUs), microprocessor units (MPUs), and display processors.

    Reply
  10. Tomi Engdahl says:

    Seeed Studio Simplifies Home Assistant Mains Control with a XIAO ESP32C3 Two-Channel Wi-Fi Relay
    Driven by Seeed’s compact Espressif ESP32-C3 RISC-V dev board, this compact relay board includes power measurement and two channels.
    https://www.hackster.io/news/seeed-studio-simplifies-home-assistant-mains-control-with-a-xiao-esp32c3-two-channel-wi-fi-relay-b75382b1eaa8

    Reply
  11. Tomi Engdahl says:

    Waveshare Double Eye LCD module is a high-tech alternative to googly eyes
    Waveshare has recently launched the Double Eye LCD module (also known as the 0.71inch DualEye LCD module), a high-tech alternative to googly eyes, with two 0.71-inch round IPS displays with 160×160 pixels of resolution and 65K color depth. It uses the GC9D01 driver and communicates via an SPI interface.

    The module operates at a 3.3V or 5V and is designed so that both ESP32 and Arduino boards can drive it. These features make this device useful for applications like wearables, robotics, IoT devices, etc…

    https://www.cnx-software.com/2024/12/11/waveshare-double-eye-lcd-module-is-a-high-tech-alternative-to-googly-eyes/

    Reply
  12. Tomi Engdahl says:

    Arduino Releases Its First Zephyr Cores, as It Makes the Move Away From Arm’s Discontinued Mbed
    While its hand may have been forced, Arduino promises big things from the move to Zephyr — including compilation time reductions.
    https://www.hackster.io/news/arduino-releases-its-first-zephyr-cores-as-it-makes-the-move-away-from-arm-s-discontinued-mbed-0259a47ff179

    Reply
  13. Tomi Engdahl says:

    XIAO Powerbread is a breadboard power supply and meter based on XIAO RP2040 or ESP32 USB-C board
    The XIAO Powerbread is a breadboard power supply and meter compatible with XIAO RP2040 or ESP32 USB-C boards and equipped with a color LCD display showing real-time voltage, current, and power consumption for 5V and/or 3.3V power rails.
    https://www.cnx-software.com/2024/12/06/xiao-powerbread-is-a-breadboard-power-supply-and-meter-based-on-xiao-rp2040-or-esp32-usb-c-board/

    Reply
  14. Tomi Engdahl says:

    https://www.facebook.com/share/a1ebBN3Xu8DQQRVD/

    Heh. AWS tyri Greengrass-alustansa jokunen vuosi sitten siirtymällä Pythonista Javaan. Nyt tarjolle tuli vihdoin taas “kevytversio”, joka toimii ilman JVM:ää ja pyörii taas keveissäkin IoT-laitteissa.

    AWS IoT Greengrass v2.14 now supports a new lightweight edge runtime software, uses less than 5MB of memory
    Posted on: Dec 17, 2024
    Today, AWS releases AWS IoT Greengrass 2.14, offering a new nucleus lite feature that supports a lightweight runtime agent for resource-constrained devices operating on embedded Linux.
    https://aws.amazon.com/about-aws/whats-new/2024/12/aws-iot-greengrass-v2-14-lightweight-edge-runtime-software/?fbclid=IwY2xjawHOxy5leHRuA2FlbQIxMQABHdSFfRSJe8Zmi21rRk-_rRRQPGhKgncA5J8W1Rko-quTlqNQRO3fdX1nCg_aem_BppMSyVeV1g0OoCsBoC9dg

    Reply
  15. Tomi Engdahl says:

    Microsoft Windows on Arm for Embedded Devices
    Microsoft Windows 11 IoT Enterprise LTSC for Arm offers significant cost, security, flexibility and support advantages for embedded devices.
    https://www.hackster.io/news/microsoft-windows-on-arm-for-embedded-devices-b98e73b180db

    Microsoft Windows on Arm for embedded devices

    With rapid increases in hardware speed and performance, complemented at the same time by reduced power and size requirements, embedded computing has seen significant growth in nearly every industry. From self-serve kiosks and retail checkout, to medical imaging devices, outdoor advertising, and even interactive casino games, edge computing is changing the landscape of how and where applications run. These kinds of systems and use cases require both specialized hardware and flexible, enterprise-grade software platforms in order to maintain physical reliability, uptime and application stability. While Intel and AMD each have dedicated x86-based products targeting these environments, there are also modern processors from Qualcomm and NXP that are highly capable, cost-effective, and offer the customization and consistency of running Microsoft Windows, on Arm-based processors.
    The shifting semiconductor landscape

    Historically, Qualcomm enjoyed significant traction in mobile device markets, supplying its Snapdragon SoCs to smartphone manufacturers like Samsung, Motorola, LG, Huawei, and more. However, with some of those device makers exiting the market and others now designing in-house semiconductors, Qualcomm is exploring new markets — particularly embedded computing applications. By focusing on embedded and industrial applications traditionally dominated by x86 processors, Qualcomm aims to capture a growing market segment in need of efficient, high-performance, and flexible computing options. Similarly, NXP has a strong legacy in microcontrollers and processors, built with reliability and a superior developer experience in mind. This makes for a solid foundation upon which to expand into embedded devices running Windows on Arm. More specifically, the version of Windows on Arm designed for these types of environments is Windows 11 IoT Enterprise LTSC (Long Term Servicing Channel), which is currently at version 24H2.

    Reply
  16. Tomi Engdahl says:

    Assembling the New HP Otto Robot Kit // Tech Highlight
    https://www.hackster.io/videos/1754

    Otto is all grown up – and now more classroom-friendly! Join us as Hackster’s Alex Glow unboxes the new kits. These DIY bots caught our attention back in 2016, with their moddable 3D-printed parts and easy Arduino coding. Creator Camilo Parra Palacio is now collaborating with Moravia Consulting and HP to bring out a new version, with web-based block coding editors and lots of cool add-ons. Stay tuned for an all-new interview with Camilo!

    Reply
  17. Tomi Engdahl says:

    Autossa vaaditaan virheetöntä ohjelmistoa
    https://etn.fi/index.php/13-news/16976-autossa-vaaditaan-virheetoentae-ohjelmistoa

    Autoteollisuus on siirtymässä yhä monimutkaisempiin ohjelmistopohjaisiin järjestelmiin, joissa virheetön ohjelmisto on elintärkeää turvallisuuden ja suorituskyvyn varmistamiseksi. Ohjelmiston laatu ja luotettavuus eivät ole enää vain valinnaisia ominaisuuksia, vaan kriittisiä vaatimuksia erityisesti autonomisessa ajamisessa, kehittyneissä kuljettajaa avustavissa järjestelmissä (ADAS) ja yhdistetyissä ajoneuvojärjestelmissä.

    Japanilainen muistiratkaisujen valmistaja Kioxia saavutti hiljattain merkittävän virstanpylvään, kun sen Universal Flash Storage (UFS) 4.0 -muistilaitteet saivat Automotive SPICE (ASPICE) Capacity Level 2 -sertifioinnin. Tämä sertifikaatti osoittaa, että yrityksen ohjelmistokehitys- ja projektinhallintaprosessit täyttävät autoteollisuuden tiukat laatustandardit.

    ASPICE on kansainvälisesti tunnustettu viitekehys, joka arvioi ohjelmistokehitysprosessien laatua ja kypsyyttä. Capacity Level 2 (CL2) -taso korostaa erityisesti jäljitettävyyttä, prosessien hallittavuutta ja virheiden ennaltaehkäisyä – ominaisuuksia, jotka ovat keskeisiä turvallisuuskriittisissä sovelluksissa.

    Reply
  18. Tomi Engdahl says:

    Dropbear SSH

    Dropbear is a relatively small SSH server and client. It runs on a variety of unix platforms. Dropbear is open source software, distributed under a MIT-style license. Dropbear is particularly useful for “embedded”-type Linux (or other Unix) systems, such as wireless routers.

    https://matt.ucc.asn.au/dropbear/dropbear.html

    Reply
  19. Tomi Engdahl says:

    Järjestelmäpiireistä tuli juuri kaksi kertaa nopeampia
    https://etn.fi/index.php/13-news/16982-jaerjestelmaepiireistae-tuli-juuri-kaksi-kertaa-nopeampia

    Alphawave Semi on esitellyt ensimmäisenä maailmassa 64 gigabitin sekuntinopeuteen yltävän UCIe-liitännän (Universal Chiplet Interconnect Express) sirujen välisiin yhteyksiin. Tämä kolmannen sukupolven teknologia nostaa sirujen välisten yhteyksien suorituskyvyn täysin uudelle tasolle.

    TSMC:n 3 nanometrin prosessissa toteutettuna ratkaisu tuottaa massiivisen yli 20 terabitin kaistanleveyden yhdellä piimillimetrillä. IP-alijärjestelmä perustuu Alphawave Semin aiempiin menestyksekkäisiin sukupolviin, mukaan lukien Gen2 (36 Gbps) ja Gen1 (24 Gbps).

    Alphawave Semin Gen3 UCIe IP mahdollistaa erittäin korkean suorituskyvyn sovelluksissa, kuten tekoälyssä (AI), datakeskuksissa ja suurteholaskennassa (HPC). Se tukee useita protokollia, kuten AXI-4, AXI-S, CXS, CHI ja CHI-C2C, vastaten kasvaviin tarpeisiin hajautettujen järjestelmien yhteyksissä.

    Standardin mukainen suunnittelu sisältää myös edistyksellisiä ominaisuuksia, kuten linja-kohtaisen kunnonvalvonnan ja reaaliaikaisen diagnostiikan, jotka tekevät ratkaisusta luotettavan ja avoimen ekosysteemin tukipilarin.

    Reply

Leave a Reply to Tomi Engdahl Cancel reply

Your email address will not be published. Required fields are marked *

*

*