Electronics design ideas 2019

Innovation is critical in today’s engineering world and it demands technical knowledge and the highest level of creativity. Seeing compact articles that solve design problems or display innovative ways to accomplish design tasks can help to fuel your electronics creativity.

You can find many very circuit ideas at ePanorama.net circuits page.

In addition to this links to interesting electronics design related articles worth to check out can be posted to the comments section.

 

 

 

 

1,815 Comments

  1. Tomi Engdahl says:

    Flawless PCB design: RF rules of thumb – Part 1
    https://www.youtube.com/watch?v=EEb_0dja8tE

    In this series, I’m going to show you some very simple rules to achieve the highest performance from your radio frequency PCB design for your electronics project. I’ll do this by showing you how to improve the grounding and reduce the crosstalk. These rules apply to both analog , digital and RF electronics. I’ll also share some rules of thumb for PCB parasitics that you can use in electronics simulations. I’ll prove my points with actual measurements on dedicated test PCBs. In this first part, I’ll focus on why ground planes are so effective.

    Website: http://www.hans-rosenberg.com

    00:00 Introduction
    00:14 The fundamental problem
    01:25 Where does current run?
    03:52 What is a Ground Plane?
    04:57 Estimating trace impedance
    05:46 Estimating parasitic capacitance
    07:38 Demo 1: Ground Plane obstruction
    13:15 Demo 2: Microstrip loss
    13:54 Demo 3: Floating copper
    16:23 Conclusion

    Reply
  2. Tomi Engdahl says:

    Flawless PCB design: 3 simple rules – Part 2
    https://www.youtube.com/watch?v=xhuHAhIKWoM

    In this series, I’m going to show you some very simple rules to achieve the highest performance from your radio frequency PCB design for your electronics project. I’ll do this by showing you how to improve the grounding and reduce the crosstalk. These rules apply to both analog , digital and RF electronics. I’ll also share some rules of thumb for PCB parasitics that you can use in electronics simulations. I’ll prove my points with actual measurements on dedicated test PCBs. In this second part, I’ll focus on the impact of layer stackups and vias to achieve the best results.

    Website: http://www.hans-rosenberg.com

    00:00 Introduction
    00:22 Test circuit description, 30 MHz low pass filter
    01:06 The worst possible layout
    02:10 Layer stackup and via impedance
    03:57 Via impedance measurements
    05:25 An improved layout
    07:05 An even better layout
    08:39 The best layout using all 3 rules
    09:48 Summary of all 3 rules
    10:21 Plans for next video

    Reply
  3. Tomi Engdahl says:

    Design Mistakes You Must Avoid on Your New Electronic Product
    https://www.youtube.com/watch?v=8bzB3vX4kdM

    6 Horribly Common PCB Design Mistakes
    https://www.youtube.com/watch?v=Z9nycymUd-I

    Reply
  4. Tomi Engdahl says:

    ESP32 in a commercial product? – From prototype to production
    https://www.youtube.com/watch?v=2vHB8AUQKWM

    Reply
  5. Tomi Engdahl says:

    Reliability issues of lead-free solder joints in electronic devices
    https://www.tandfonline.com/doi/full/10.1080/14686996.2019.1640072

    Reply
  6. Tomi Engdahl says:

    Simple 5-component oscillator works below 0.8V
    https://www.edn.com/simple-5-component-oscillator-works-below-0-8v/#google_vignette

    Often, one needs a simple low voltage sinusoidal oscillator with good amplitude and frequency stability and low harmonic distortion; here, the Peltz oscillator becomes a viable candidate. Please see the Peltz oscillator Analog Devices Wiki page here and a discussion on my Peltz oscillator here.

    Reply

Leave a Reply to luo w Cancel reply

Your email address will not be published. Required fields are marked *

*

*