Electronics design ideas 2019

Innovation is critical in today’s engineering world and it demands technical knowledge and the highest level of creativity. Seeing compact articles that solve design problems or display innovative ways to accomplish design tasks can help to fuel your electronics creativity.

You can find many very circuit ideas at ePanorama.net circuits page.

In addition to this links to interesting electronics design related articles worth to check out can be posted to the comments section.

 

 

 

 

1,877 Comments

  1. Tomi Engdahl says:

    Understanding The Miller Effect
    https://hackaday.com/2025/02/13/understanding-the-miller-effect/

    As electronics rely more and more on ICs, subtle details about discrete components get lost because we spend less time designing with them. For example, a relay seems like a simple component, but selecting the contact material optimally has a lot of nuance that people often forget. Another case of this is the Miller effect, explained in a recent video by the aptly named [Old Hack EE].

    Put simply, the Miller effect — found in 1919 by [John Milton Miller] — is the change in input impedance of an inverting amplifier due to the gain’s effect on the parasitic capacitance between the amplifier’s input and output terminals. The parasitic capacitance acts like there is an additional capacitor in parallel with the parasitic capacitance that is equivalent to the parasitic capacitance multiplied by the gain. Since capacitors in parallel add, the equation for the Miller capacitance is C-AC where C is the parasitic capacitance, and A is the voltage gain which is always negative, so you might prefer to think of this as C+|A|C.

    The example uses tubes, but you get the same effect in any inverting amplification device, even if it is solid state or an op amp circuit. He does make some assumptions about capacitance due to things like tube sockets and wiring.
    The effect can be very pronounced. For example, a chart in the video shows that if you had an amplifier with gain of -60 based around a tube, a 10 kΩ input impedance could support 2.5 MHz, in theory. But in practice, the Miller effect will reduce the usable frequency to only 81.5 kHz!

    The last part of the video explains why you needed compensation for old op amps, and why modern op amps have compensation capacitors internally.

    Reply
  2. Tomi Engdahl says:

    Fixing the Full Bridge Rectifier’s Big Flaw – Active Power Factor Correction
    https://www.youtube.com/watch?v=eI_LQWrQam4

    Full bridge rectifiers may seem great, but there’s a pretty big problem with them that is becoming ever more relevant.

    What happens when:
    0:00 Introduction
    0:20 How a full bridge rectifier works
    1:36 The problem With FBRs
    3:23 Power factor
    5:10 Power factor correction
    5:49 Building a boost PFC circuit
    10:24 Advanced PFC circuits
    11:31 Conclusion
    11:48 Outro

    Reply
  3. Tomi Engdahl says:

    https://etn.fi/index.php/new-products/17203-pieniae-kuormia-yli-90-prosentin-hyoetysuhteella

    STMicroelectronics on julkistanut uuden DCP3601-buck-muuntimen, joka yhdistää pienen koon, korkean hyötysuhteen ja yksinkertaisen rakenteen. Vain kuusi ulkoista komponenttia vaativa DCP3601 mahdollistaa kustannustehokkaiden ja kompaktien piirisuunnittelujen toteuttamisen.

    Buck-muunnin on hakkurivirtalähde, joka alentaa lähtöjännitettä suhteessa tulojännitteeseen. ST:n uusi muunnin toimii 3,3V–36V syöttöjännitteellä ja kykenee tuottamaan 1A lähtövirran, mikä tekee siitä ihanteellisen valinnan esimerkiksi älymittareihin, kodinkoneisiin ja teollisuuden 24V-muunnoksiin. Sen synkroninen tasasuuntaus ja 1 MHz:n kytkentätaajuus takaavat korkean hyötysuhteen kaikissa käyttötilanteissa, yltäen jopa 91 prosenttiin 600 mA kuormituksella (12V sisään, 5V ulos).

    Reply
  4. Tomi Engdahl says:

    The DCP360 series is ideal for major appliances, smart metering, and 24 V industrial bus conversion
    https://www.st.com/content/st_com/en/campaigns/advanced-synchronous-buck-converters.html?icmp=tt42873_gl_pron_feb2025

    Reply

Leave a Reply to Tomi Engdahl Cancel reply

Your email address will not be published. Required fields are marked *

*

*