5G trends 2020

Here are some 5G trends for year 2020:

It looked like 5G and wireless dominated the airways in 2019. It seems that year 2020 will be a real test for 5G if it will really take on or fails to full-fill the big expectations. It seems that 5G networks are available at some place here and there from many operators, but 5G end user devices are not yet widely available or desired. New year will bring more 5G base stations.

5G: How Much is Real vs. Marketing? Is 5G ready for prime time? Breaking down the marketing hype versus what’s really going on in the industry. Marketing claims 5G is pervasive. The question is when: 2020 or is it 2025?

First, let’s define 5G also known as 5G New Radio, or 5G NR:
There is sub-6-GHz 5G for the cellphone protocol that requires LTE: 5G NSA.
There is sub-6-GHz standalone 5G: 5G SA.
There is 20- to 60-GHz 5G: 5G mmWave.

It seems that 2020 will be the real test for 5G devices as the 5G device mass market has not yet really started. Samsung says it shipped 6.7M+ Galaxy 5G phones globally in 2019, accounting for 53.9% of the 5G phone market (Galaxy S10 5G and the Galaxy Note 10 Plus 5G). 2020 is expected to be an interesting year for 5G growth across the smartphone market. Increased 5G rollouts by carriers means that customers will presumably be more interested in actually buying 5G devices. One June 2019 forecast made by Canalys has global 5G smartphone shipments crossing 4G smartphone shipments in 2023.

5G will be integrated to some PCs. Dell debuts a new Latitude 9510 laptop with built-in 5G, to launch March 26.

Ericsson says they are now 5G networks leader according to Ericsson ylitti odotukset kirkkaasti: ”Olemme 5g-johtaja” article. Nokia has cut its outlook for this year and next because of the need to step up its investments in 5G but ‘We don’t have a 5G problem,’ says Nokia’s head of software.

5G will be a good growing market for test device manufacturers as engineers will once again need to sharpen their skill sets and adopt new design and testing techniques. A lot of 5G Component Characterization and Test will be needed.Delivering 5G Devices to Market Will Bank on OTA Testing.

Network side needs also testing equipment. One approach being adopted to gain ground in the race to 5G involves the rapid prototyping and testing of network architectures. There is need for programmable RF devices. Industry seems to want their own private networks.

5G components are available from many sources already. The typical RF component suppliers are all providing 5G solutions: Avago/Broadcom, Huawei, MediaTek, Murata/pSemi (previously known as Peregrine), Qualcomm, Qorvo, Samsung, and Skyworks.

Challenges: Even the sub-6-GHz versions have technical issues in that the 5G target “air time” latency is 1 to 4 ms. Typical RF component manufacturers appear to be providing components that focus only on the sub-6-GHz frequency bands. The geopolitical situation relative to 5G also adds confusion to the 5G timeline.

There are many technical issues must be considered in the utilization of mmWave: mmWave frequencies travel relatively small distances. the mmWave transmitters consume a considerable amount of transmit power, providing additional challenges for battery-operated devices.

Market size: Several 5G market analyzers place the current worldwide market at approximately $40B (USD) and growing by a 57% CAGR to over $1T (USD) by 2025. With the standards still evolving, what are the likely changes that will occur by 2025?

5G in automotive: The automobile industry is experiencing exponential growth of self-driving features, and this trend is expected to continue. 5G network connections are expected to have a major influence on the development of self-driving cars making them faster, smarter, and safer. Where is car technology going in 2020?

As 5G work has started for many installers and marketers, the the researchers are already thinking about the nest step Beyond 5G chips. They are already planning technologies that could enable high-speed wireless devices beyond the 5G standard.

1,560 Comments

  1. Tomi Engdahl says:

    IoT-data alkaa siirtyä kännykkäverkkoon
    https://etn.fi/index.php/13-news/14188-iot-data-alkaa-siirtyae-kaennykkaeverkkoon

    IoT-datan määrä mobiiliverkoissa tulee kasvamaan voimakkaasti vuoteen 2030 saakka, arvioi Strategy Analytics. Tämä perustuu ennen kaikkea kesällä hyväksyttyyn uuteen 5G-standardiin, joka tunnetaan nimellä RedCap.

    Vuosikymmenen loppuun mennessä 5G-yhteydet ovat lähes yhtä yleisiä kuin 4G LTE. 4G-verkossa kulkee tuolloin 49 prosenttia mobiiliverkkojen IoT-datasta. 2G eli vanha GSM ja 3G menettävät samalla asemansa, kun IoT-laitteet toimivat joko 4G- tai 5G-verkoissa.

    Tämä ei tietenkään tarkoita kaikkea IoT-dataa. Markkinoilla on jo paljon vapaisiin taajuuksiin perustuvia ratkaisuja, kuten Sigfox ja LoRa. Niiden käyttö säilyy, mutta mobiiliverkoilla on yksi iso etu puolellaan: infra on useimmissa paikoissa jo valmiina.

    Mikä mobiiliverkkojen IoT-kasvun taustalla oleva RedCap sitten on? Se on osa kesällä hyväksyttyjä 3GPP Release 17 -määrityksiä ja eräänlainen kevytversio 5:stä. Sitä on myös kutsuttu nimellä NR-Lite. Yhteys käyttää 20 megahertsin kanavaa ja yltää noin 85 megabitin datanopeuteen. Laitteissa voi olla 1-2 antennia sovelluksen tarpeen mukaan. Modulaationa käytetään QAM-128:aa. Yhteys voi olla joko Half- tai Full Duplex eli sovelluksen vaatiessa dataa voidaan lähettää samanaikaisesti molempiin suuntiin.

    Reply
  2. Tomi Engdahl says:

    Keysight has gained Global Certification Forum (GFC) validation of a 5G location based services (LBS) Assisted Galileo test case combining 5G NR and GNSS technology….

    Keysight test case advances 5G location based services
    https://www.edn.com/keysight-test-case-advances-5g-location-based-services/

    Keysight has gained Global Certification Forum (GFC) validation of a 5G location based services (LBS) Assisted Galileo test case combining 5G NR and GNSS technology. The achievement will accelerate the implementation of LBS in smartphones by enabling mobile phone vendors to verify that designs comply with the latest 3GPP specifications supporting accurate location positioning.

    Reply
  3. Tomi Engdahl says:

    Ericsson demos gigabit speed on 5G CBRS spectrum
    https://www.edn.com/ericsson-demos-gigabit-speed-on-5g-cbrs-spectrum/

    Ericsson achieved a peak data rate of over 1 Gbps for a single user device in a recent 5G standalone Citizen’s Broadband Radio Service (CBRS) field trial. The trial was conducted over a live CBRS multi-operator, neutral-host–capable network at the company’s North American headquarters in Plano, TX.

    The OnGo Alliance coordinated the interoperability of the CBRS ecosystem, supported by a 5G core network as part of the Ericsson’s 5G Distributed Innovation Network. The field trial employed Ericsson’s Radio 4408 for outdoor CBRS connectivity and Radio Dot 4459 for indoor CBRS connectivity. According to Ericsson, this is the first time that indoor over-the-air coverage through shared spectrum has reached such a high data rate.

    The Radio Dot 4459, introduced last year, supports CBRS New Radio, as well as C-band spectrum, for indoor deployments. It leverages the entire CBRS 150-MHz wide broadcast band and uses advanced radio technologies such as 4×4 MIMO, 4G/5G mixed-mode operation, and carrier aggregation.

    Reply
  4. Tomi Engdahl says:

    Vodafone rakentaa avointa 5G-verkkoa Nokian raudalla
    https://etn.fi/index.php/13-news/14244-vodafone-rakentaa-avointa-5g-verkkoa-nokian-raudalla

    Vodafone ja Nokia ovat sopineet työskentelevänsä yhdessä täysin yhteensopivan RAN (Open Radio Access Network) -ratkaisun parissa. Jo ensi vuoden alkupuolella yhtiöt lupaavat esitellä Open RAN -kantataajuusjärjestelmää.

    Vodafonen mukaan ratkaisuun tullaan yhdistämään Nokian yhteistyössä Marvellin kanssa kehitetyn kehitetty ReefShark-järjestelmäpiirien tekniikka ja tavalliset kaupalliset palvelimet. Tarkoituksena on sekä osoittaa Open RAN -ratkaisun toiminnallisuus että todistaa, että sen suorituskyky vastaa perinteisen mobiiliverkon suorituskykyä. ReefShark-laitealusta tehostaa verkon 1-kerroksen prosessointikykyä, joka on välttämätön monien käyttäjien yhdistämiseksi mobiilitukiasemaan ja korkean mobiilidataliikenteen tukemiseen.

    Nokia on ensimmäinen suuri eurooppalainen RAN-laitteiden toimittaja, joka tukee täysin Open RANia, Vodafone kehuu. Kumppanuus Nokian kanssa auttaa operaattoria saavuttamaan julkisen tavoitteensa, jonka mukaan 30 prosenttia sen eurooppalaisista verkoista perustuu ORAN-arkkitehtuuriin vuoteen 2030 mennessä.

    Vodafonen teknologiajohtaja Johan Wiberghin mukaan Open RAN muuttaa verkot puhtaista viestintäjärjestelmistä innovaatioalustoiksi. – Se muuttaa kännykkämastot automatisoiduiksi ohjelmistopohjaisiksi älytorneiksi, jotka pystyvät tukemaan uusia sovelluksia telelääketieteessä, kodeissa, liikenteessä ja tehtaissa.

    Avoin radioverkko erottaa mobiilitukiaseman laitteistot ja ohjelmistot, mikä mahdollistaa eri valmistajien laitteiden yhdistelmän, myös yleiskäyttöisten palvelinalustojen käytön mobiilitukiaseman laskennassa. Open RAN lupaa myös suurempaa verkon automaatiota kuin tähän mennessä on ollut mahdollista.

    Open RANin osuus mobiiliverkkojen markkinoista on edelleen pieni.

    Reply
  5. Tomi Engdahl says:

    5G Densification: Making 5G a Working Reality
    Aug. 26, 2022
    With 5G cellular forging ahead, understanding the economics behind the investment decisions is crucial to overcoming complexities around deploying 5G.
    https://www.mwrf.com/technologies/systems/article/21249378/nxp-semiconductors-5g-densification-making-5g-a-working-reality

    As the rollout for 5G cellular continues, network operators are modifying the existing infrastructure. They’re adding what’s needed to support the higher rates, greater device density, and lower latency we’ll need to run advanced 5G use cases, now and in the future.

    Operators have done this kind of work before, moving cellular from 2G to 3G and 4G, but this time it’s different. 5G is more than just an overlay on the previous generation—it’s a seismic shift that brings fundamental change at every level. Preparing for 5G operation means having to deal with new technologies and new techniques, from recently opened bands of unfamiliar spectrum and complex active antenna architectures to virtualization and machine-learning algorithms.

    At the same time, the goal of infrastructure investment has taken a turn. The traditional focus, in place for roughly 30 years, has been on coverage and trying to find the lowest cost per square kilometer serviced. The focus for 5G, on the other hand, is on capacity, and trying to find the lowest cost per gigabit delivered.

    As the network is becoming denser, with more pieces of equipment used to provide 5G capacity within a given area, it’s also becoming more diverse—more types of equipment are used to deliver 5G service. What was once a network dominated by traditional macro cells is becoming an intricate mix of technologies used to deliver capacity where it’s needed most.

    The complexities of deploying this kind of heterogeneous network are offset by the fact that the cellular service becomes more flexible, making it easier to meet changes in demand and support new use cases while managing costs. To understand the economics of these investment decisions, it’s useful to review what makes 5G different and, as a result, more challenging to work with.

    Three Ways 5G is Different

    Three things that set 5G apart from previous generations are 1) where in the wireless spectrum it operates; 2) the antenna structure used to transmit and receive signals; and 3) the transition to a more software-based approach to managing and optimizing operation.

    New spectrum: As shown in Figure 1, 5G extends the existing cellular spectrum to include the area between 2.7 and 6 GHz and adds a completely new part of the spectrum above 25 GHz. This new portion of the spectrum, known as millimeter wave (mmWave), was previously reserved for other services, such as medical imaging, microwave remote sensing, amateur radio, terahertz computing, and radio astronomy. It will enable ultra-high bandwidth and ultra-low latency use cases but presents a steep learning curve for engineers used to working below 6 GHz.
    New antenna configurations: 5G uses active antennas, which are more highly integrated and more complex than the passive antennas traditionally associated with cellular. Active antennas require a sophisticated mix of hardware and software and leverage massive MIMO (mMIMO), a technique that involves dozens (if not hundreds) of antennas working together to expand capacity within the same bandwidth. Working with so many antennas is a complex, compute-intensive task that requires careful optimization to ensure reliable, interference-free operation.
    More code: 5G makes extensive use of virtualization, with more being done in the cloud, and often uses machine-learning (ML) algorithms for optimized network management, orchestration in the core, traffic monitoring, and load balancing. A typical 5G base station has millions of lines of code, using software to add new features like support for more devices, increased capacity, and expanded coverage to accommodate more traffic. Heavy reliance on software changes how the network is deployed and operated and changes the security models.

    Putting 5G to Work in Layers

    Preparing the infrastructure for 5G operation, through what’s known as 5G densification, involves adding different layers of coverage, each providing the throughput improvements needed for a given area or use case. As shown in Figure 2, these layers consist of traditional 5G macrocells, 5G mMIMO cells, 5G mmWave cells, and small cells.

    5G and Wi-Fi 6/6E

    While cellular networks have been evolving toward 5G, Wi-Fi networks also have been evolving to the next generation. Known as Wi-Fi 6/6E, the latest versions of Wi-Fi bring the high-throughput and low-latency benefits of 5G to the indoor environment and are much easier to deploy than 5G. Chipsets for Wi-Fi 6, which runs in the licensed 2.5- and 5-GHz spectrum, and Wi-Fi 6E, which runs in the unlicensed 6-GHz spectrum, are already available.

    Cellular and Wi-Fi are complementary technologies. Today’s smartphones already combine the two, making it possible to switch from cellular to Wi-Fi when the cell signal is weak or to save on data usage. This trend is expected to continue, with Wi-Fi 6/6E and 5G small cells working in tandem to support more devices accessing more data, all at once.

    5G can even boost the deployment of Wi-Fi 6/6E by making it easier to connect Wi-Fi signals to the core network. In FWA applications, for example, 5G mmWave cells can be used as the backhaul service, replacing the expensive fiber-optic cabling currently used to link many Wi-Fi gateways to the core network.

    5G isn’t a one-size-fits-all proposition. From power amplifiers, high-power transistors, beamforming ICs, and highly integrated receiver and driver modules to power-efficient Arm processors and customizable, DSP-driven baseband devices, the right components make the 5G infrastructure more efficient, more effective, and more reliable.

    Reply
  6. Tomi Engdahl says:

    5G Fuels Shift to O-RAN Architectures—and Its Security Challenges
    Sept. 14, 2022
    As the telecom industry evolves from a proprietary hardware-driven world to 5G O-RAN architectures, addressing all possible security concerns has become the top priority for network equipment vendors and service providers.
    https://www.mwrf.com/technologies/systems/article/21250693/lattice-semiconductor-5g-fuels-shift-to-oran-architecturesand-its-security-challenges

    What you’ll learn:

    How the adoption of 5G is driving the telecommunications industry to disaggregate previously enclosed system designs.
    The security challenges faced by network equipment vendors and service providers in an Open Radio Access Network (O-RAN) environment.
    How FPGAs are well-suited to address security challenges related to O-RAN architectures.

    Network evolution and the adoption of 5G is forcing telecommunication vendors to adapt at a rapid pace as more and more devices are expected to be connected to the network at any given time. In fact, 3.6 billion 5G connections are expected by 2025, and that number is expected to grow to 4.4 billion by 2027. In response, the telecom industry is beginning its transition to O-RAN (Open Radio Access Network)-type architectures to increase network flexibility and efficiency.

    However, this shift doesn’t come without challenges. While moving to an O-RAN architecture opens all sorts of advanced network possibilities, it also dramatically increases the potential attack surface for a network. The attack surface is the totality of all vulnerabilities in connected hardware and software that are accessible to unauthorized users.

    That risk of attack increases especially because O-RAN architectures enable system designers to mix and match hardware and software from different vendors. As a result, network architects and hardware designers must consider every possible connection and ensure that each is safe and secure—a multi-step process that’s easier said than done.

    The Need for Platform Firmware Resiliency

    As the attack surface of networks increases, it’s no longer a matter of whether a network will be attacked, but rather when it will happen. Therefore, hardware designers must move forward with platform firmware resiliency (PFR) in mind.

    PFR is a cyber resiliency system that compute systems can count on to actively protect and keep themselves running and functional to a very high degree while under attack. The first step to achieving PFR is using a device that serves as a hardware root of trust (HRoT) to confirm a device’s firmware hasn’t been tampered with throughout its lifetime.

    Because security threats begin at the hardware level, no matter how many connections there are across a network, designing with an HRoT device is critical to achieve PFR. Low-power FPGAs are particularly well-suited to serve as HRoTs because of their flexibility and small form factors. FPGAs with built-in cryptographic capabilities can encrypt and decrypt incoming and outgoing firmware data to ensure secure firmware updates.
    Leveraging a Zero-Trust Security Model

    Protecting the integrity of firmware is only the start to maintaining the security of hardware elements in O-RAN architectures. With O-RAN systems comprising different hardware from various vendors, any two endpoints that carry data pertaining to network functions or user data must be protected—a process also known as “securing the wire.” When leveraging a zero-trust security model like securing the wire, every system component must confirm its authenticity to the host system using encrypted messages.

    This is where FPGAs with built-in RISC-powered CPU cores come into play (see figure). With the inherent flexibility of FPGAs, CPU cores can be programmed to implement cryptographic and secure messaging protocols. Because FPGAs are reprogrammable, they’re ideal for accelerated scalability and can help hardware designers keep pace with 5G innovation without sacrificing security and designs.

    Securing Data-Synchronization Connections

    While securing the hardware elements in an O-RAN architecture is critical, so is securing the timing controls of data sent across a network’s hardware elements. Older closed RANs typically contain a shared clock signal that coordinates the bonding of radio signals coming in at different frequencies into a single chunk of digital data.

    In an O-RAN system, such bonding still needs to happen. However, with radio units and distributed units now disaggregated, the shared clock signal is no longer an option.

    Using the IEEE 1588 precision time protocol standard, O-RAN systems must time-stamp data packets so that they’re synchronized across components. FPGAs have historically been used as a reliable timing resource in various applications, and this remains true in O-RAN architectures. Thanks to the concurrent and consistent way FPGAs operate, they’re a perfect fit to meet the synchronization demands for functional-split options where radio units and distributed units are separated.

    Addressing 5G O-RAN Architecture Security Challenges with FPGAs

    As 5G continues to fuel the shift to O-RAN architectures, FPGAs, though small and easily overlooked, offer the flexibility, reliability, and low power consumption required to meet evolving security challenges found across networks. While serving as HRoT devices, powering zero-trust security models, and keeping data-synchronization timing controls tight and secure, FPGAs are playing a critical role in accelerating 5G O-RAN deployments.

    Reply
  7. Tomi Engdahl says:

    5G Synchronization for Cost-Sensitive Cable Modems
    Oct. 14, 2022
    Get an insider’s look into a new approach for designing 5G radio access networks (RANs).
    https://www.mwrf.com/technologies/systems/article/21252771/renesas-electronics-5g-synchronization-for-costsensitive-cable-modems

    What you’ll learn:

    New specifications for mobile backhaul over the cable network that can address the performance requirements of 5G RAN.
    How next-generation, low-cost silicon timing can convert from DOCSIS Timing Protocol (DTP) to both IEEE 1588 and Synchronous Ethernet clocks used for eCPRI fronthaul timing.
    Key features to look for in new timing silicon to operate as a synchronous network equipment master clock.

    5G radio access networks (RANs) require a new approach to designing and building networks. Work by organizations like CableLabs is spawning specifications for mobile backhaul over the cable network that can address the performance requirements of 4G/LTE and 5G RAN.

    The existing Data Over Cable Service Interface Specification (DOCSIS) hybrid fiber coax (HFC) infrastructure provides many advantages for wireless backhaul. For example, a North American operator case study found that all of the ideal small-cell locations were within 10 meters of coax.

    DOCSIS transport itself is synchronous in nature and uses a common clock derived by the cable-modem termination system (CMTS). This clock has a ±5-ppm clock accuracy.

    DOCSIS 3.1 introduced the DOCSIS Timing Protocol (DTP) to measure the asymmetries in the HFC network and provide an adjustment factor to the DOCSIS timestamp. It allowed for much more precise time distribution over the HFC, including synchronizing the DOCSIS domain to a network source, such as a Primary Reference Time Clock (PRTC).

    If the DOCSIS network is providing the backhaul service, it now needs to be part of the timing distribution chain, carrying precision timing down to the CM and into the Wireless End Application (WEA) network. The DOCSIS Timing Protocol (DTP) was designed to carry this precise timing, enabling the DOCSIS link to work with other elements of the operator’s network to meet the overall timing requirement needed by the radio base-station slave clock. Figure 2 shows an example deployment scenario of the current mobile backhaul.

    Reply
  8. Tomi Engdahl says:

    Nokia teki 5G-ennätyksen: kaksi gigabittiä sekunnissa verkkoon päin
    https://etn.fi/index.php/13-news/14260-nokia-teki-5g-ennaetyksen-kaksi-gigabittiae-sekunnissa-verkkoon-paein

    Nokia kertoo saavuttaneensa uuden maailmanennätyksen 5G-verkkojen upnlink-yhteyksissä eli datansiirrossa päätelaitteesta verkkoon päin. Yhdessä australialaisen TPG Telecomin kanssa dataa siirrettiin verkkoon päin 2 gigabitin sekuntinopeudella.

    Virstanpylväs saavutettiin Nokia 5G Futures Labissa Sydneyssä Australiassa pidetyssä live-esittelyssä käyttämällä TPG Telecomin 5G mmWave -taajuutta. Nopampi uplink-yhteys auttaa operaattoria tarjoamaan entistä nopeampia ja alhaisempien latenssien yhteyksiä esimerkiksi teollisuuteen ja IoT-palveluihin.

    Reply
  9. Tomi Engdahl says:

    NXP Accelerates 5G Designs with RapidRF
    https://www.nxp.com/company/blog/nxp-accelerates-5g-designs-with-rapidrf:BL-NXP-ACCELERATES-5G-DESIGNS-WITH-RAPIDR

    As Open RAN (O-RAN) continues to be deployed across the world, NXP enables faster 5G O-RAN deployments by creating enhanced reference designs. This includes an RF approach into customer designs with our RapidRF Smart LDMOS Front-End Solutions known as the ‘SL Series’.

    NXP’s 2nd generation RapidRF front-end reference board has been designed to save board space, reduce overall complexity and provide a complete ready-to-use circuit for TDD cellular applications. Like previous generations, this 2nd generation RapidRF implements fully matched amplifiers 50 ohms in and 50 ohms out. This allows for a complete line-up with no tuning required for ease of use.

    Reply
  10. Tomi Engdahl says:

    5G on airplanes could mean the end of Airplane Mode
    The measure is currently being discussed
    https://www.androidauthority.com/5g-on-airplanes-3244130/

    The EU is deciding whether to let airplane passengers use data and make calls while in the air.
    The ruling would allow airlines to provide 5G connectivity instead of requiring passengers to pay for slow Wi-Fi.
    If agreed upon, members of the EU would need to make 5G on airplanes ready by June 30, 2023.

    Reply
  11. Tomi Engdahl says:

    Ericsson ylsi uuteen 5G-ennätykseen
    https://etn.fi/index.php/13-news/14356-ericsson-ylsi-uuteen-5g-ennaetykseen

    ricsson kertoo saavuttaneensa uuden ennätyksen 5G-verkkojen uplink-yhteyksissä yhdessä australialaisen Telstran ja Qualcommin kanssa. Australian Queenslandissa päätelaitteesta saatiin siirtymään dataa verkkoon päin 7,3 gigabitin sekuntinopeudella.

    Ennätys tehtiin päätelaitteella, jossa oli Quacommin SNapdragon X70 -modeemi. Queenslandin testissä päätelaite yhdistyi verkossa Ericssonin tukiasemaan, joka tuki uutta kahden linkin Dual Connectivity -tekniikkkaa.

    Kaikkiaan uplink-yhteyden käytössä oli 900 megahertsin kaista, kun samaan linkkiin yhdistettiin 800 megahertsiä n256kaistalla (26 GHz) ja 100 megahertsiä midband-kaistalla N78 3,6 GHz). N78-taajuus on TDD- eli aikajakoisessa käytössä 5G NR -yhteyksissä.

    Reply
  12. Tomi Engdahl says:

    Nokia taas 5G-läpimurtoon – nyt yhteydessä verkkoon päin
    https://etn.fi/index.php/13-news/14365-nokia-taas-5g-laepimurtoon-nyt-yhteydessae-verkkoon-paein

    Nokia ja Saksan O2 Telefónica ovat saavuttaneet läpimurron kaupallisessa 5G-verkossa yhteyksissä verkkoon päin. Ensimmäistä kertaa kaupallisessa verkossa yhdistettiin kaksi alle 6 gigahertsin kantoaaltoa samaan uplink-yhteyteen toisen polven 5G- eli ns. standalone-verkossa.

    Kantoaaltoja yhdistämällä eli ns. CA-tekniikalla (carrier aggregation) operaattorit voivat maksimoida käytössään olevien taajuuksien hyödyntämisen. Kun CA-tekniikkaa käytetään yhteyksissä päätelaitteesta verkkoon päin, voivat käyttäjät jakaa sisältöjä nopeammin ja joustavammin.

    Nokia ja O2 Telefónica testasivat kahden kantoaallon CA-uplinkiä operaattorin innovaatiokeskuksessa lähellä Berliiniä. Nokia toimitti testiin uusimpia AirScale-tukiasemiaan, jotka toimivat sen Reefshark-piirisarjan avulla. Testissä käytössä ollut päätelaite perustui MediaTekin uuteen 5G-mobiilialustaan, jossa M80modeemi tukee uusimpia 3GPP Release 16 -määrityksiä. Modeemi oli MediaTekin Dimensity 9000 -lippulaivapiirisarjan kyljessä.

    Reply
  13. Tomi Engdahl says:

    DNA: jo puolet mobiilidatasta 5G-verkossa
    https://etn.fi/index.php/13-news/14377-dna-jo-puolet-mobiilidatasta-5g-verkossa

    DNA on julkistanut kuuvan vuoden Datakronikka-selvityksen, joka selventää suomalaisten datankäyttöä. Nuoret ei alle 30-vuotiaat roikkuvat verkossa kaiken aikaa ja yli puolet mobiilidatasta kulkee jo 5G-verkossa, selviää Datakronikasta.

    Luvut koskevat toki DNA:n omia liittymiä, mutta aiemmat tutkimukset osoittavat, että käyttötavat ovat hyvin samanlaisia kaikilla operaattoreilla. DNA:n lukujen mukaan 5G-liittymillä kulutetaan lähes 1200 megatavua eli 1,2 gigaa dataa päivässä. Myös 4G-datan määrä on kasvanut ja on nyt keskimäärin 983 megatavua päivässä. 3G:ssä data ei käytännössä enää liiku. DNA sulkeekin oman 3G-verkkonsa ensi vuoden lopulla.

    18-29-vuotiaat käytävät keskimäärin 2142 megatavua päivässä. Kun HD-tasoisen Netflix-elokuvan striimaaminen kuluttaa noin kolme megatavua, pelkästään elokuvilla ei tällaisiin datamääriin voi päästä. Datakronikassa esitetäänkin selitykseksi TikTokin kaltaisia sovelluksia, jotka ovat todellisia datasyöppöjä.

    Reply
  14. Tomi Engdahl says:

    10-Bit Broadband Data Converter Operates Beyond 35 GHz
    Dec. 12, 2022
    A single-channel sampler can operating across L- through to Ka-band, providing up to 6 GHz of instantaneous bandwidth supporting all current radio link needs.
    https://www.electronicdesign.com/technologies/test-measurement/video/21256081/electronic-design-10bit-broadband-data-converter-operates-beyond-35-ghz?utm_source=EG+ED+Analog+%26+Power+Source&utm_medium=email&utm_campaign=CPS221209012&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  15. Tomi Engdahl says:

    US Government Agencies Issue Guidance on Threats to 5G Network Slicing
    https://www.securityweek.com/us-government-agencies-issue-guidance-threats-5g-network-slicing

    The National Security Agency (NSA), the Cybersecurity and Infrastructure Security Agency (CISA), and the Office of the Director of National Intelligence (ODNI) have released guidance on the security risks associated with 5G network slicing and mitigation strategies.

    The document explains that “a network slice is an end-to-end logical network that provides specific network capabilities and characteristics to fit a user’s needs” and that it can run on the same physical network with other slices, albeit users are authenticated for a network area only.

    Spanning physical components of a network – including computing, storage, and infrastructure – network slicing provides component virtualization and enables data and security isolation by restricting user authentication to specific network areas.

    “It is important to note that network slicing components can span multiple operators, so interoperability, security, and robustness become important challenges to address. From a security standpoint, the resources of one network slice should be isolated from other network slices to ensure confidentiality, integrity, and availability,” the guidance reads.

    The architecture relies on a network-as-a-service (NaaS) model, where infrastructure-as-a-service is combined with network and security services, to improve the efficiency and resilience of 5G infrastructure. Mobile network operators need to use management and network orchestration (MANO) systems to create end-to-end network slices and operate them, the three agencies say.

    According to the Enduring Security Framework (ESF), network slicing adds complexity to the network and improper management of network slices could allow threat actors to access data in other network slices or deny access to it.

    https://media.defense.gov/2022/Dec/13/2003132073/-1/-1/0/POTENTIAL%20THREATS%20TO%205G%20NETWORK%20SLICING_508C_FINAL.PDF

    Reply
  16. Tomi Engdahl says:

    https://www.uusiteknologia.fi/2022/12/14/5g-reititin-qualcommin-piireilla/

    Kiinalaisvalmistaja ZTE tuo tarjolle Qualcommin Snapdradgonin SDX62-5G-piiriin perustuvan MC888 Pro –lippulaivareitittimen. Laite tukee usean kaistan yhteysnopeuksia sekä 4G- ja 5G-taajuuksia ja WiFi 6:ta 5400 Mbps:n latausnopeudella.

    Reply
  17. Tomi Engdahl says:

    10-Bit Broadband Data Converter Operates Beyond 35 GHz
    Dec. 12, 2022
    A single-channel sampler can operate across L- through to Ka-band, providing up to 6 GHz of instantaneous bandwidth supporting all current radio link needs.
    https://www.electronicdesign.com/technologies/test-measurement/video/21256081/electronic-design-10bit-broadband-data-converter-operates-beyond-35-ghz

    Teledyne e2v showcased its EV10AS940, the company’s latest advanced 10-bit broadband data converter—a part of its push into software-defined microwave technologies. Conventional radios still use heterodyning to mix two signal frequencies in a nonlinear mixer. Moving to high-bandwidth direct-conversion devices enables significantly simplified, software-defined receivers with frequency agility. In a major front-end architectural change, the solution employs single-ended design rules for the clock and signal lines; thus, frequency-dependent baluns can be eliminated.

    Reply
  18. Tomi Engdahl says:

    ESF Members NSA and CISA Provide Threat Assessment, Best Practices for 5G Network Slicing https://www.nsa.gov/Press-Room/Press-Releases-Statements/Press-Release-View/Article/3244745/esf-members-nsa-and-cisa-provide-threat-assessment-best-practices-for-5g-networ/
    Network slicing is a 5G network architecture which allows mobile service providers to divide their network up into several independent slices. [This is in] order to create specific virtual networks that cater to different clients and use cases. Todays report specifically identifies management strategies to ensure the confidentiality, integrity, and availability of each network slice.

    Reply
  19. Tomi Engdahl says:

    Sarah Marsh / Reuters:
    Report: Huawei accounts for 59% of Germany’s 5G radio access network equipment, compared to 57% in 4G networks, despite intense diplomatic pressure from the US

    Germany ups reliance on Huawei for 5G despite security fears -survey
    https://www.reuters.com/technology/germany-ups-reliance-huawei-5g-despite-security-fears-survey-2022-12-16/

    Huawei accounts for 59% of German installed 5G RAN gear
    Some European nations not using Huawei at all for 5G
    Berlin may tighten rules on critical infrastructure suppliers

    Reply
  20. Tomi Engdahl says:

    Ericssonin omalla sirulla jopa 13 miljardia transistoria
    https://etn.fi/index.php/13-news/14394-ericssonin-omalla-sirulla-jopa-13-miljardia-transistoria

    Tukiasemien kilpailukyky perustuu nyt yhä selvemmin laitavalmistajien omiin, räätälöityihin prosessoreihin. Näin on Nokian Reefsharkin kohdalla ja Ericssonilla jolla omia ASIC-piirejä kutsutaan vain nimellä ”Ericsson Silicon”.

    Sijoittajille suunnatussa pääomapäivässään Ericsson kertoi, että uusimman Ericssonin ASIC-perheen siruilla on peräti 9-13 miljardia transistoria. Yhtiön mukaan näide piirin valmistus tapahtuu uusimmissa prosesseissa eli lähinnä 7, 5 ja 3 nanometrin viivanleveyksillä.

    Ericsson on suunnitellut useita vuosia omia ASIC-piirejä, mutta viime vuoden helmikuussa ne nousivat parrasvaloihin yhtiön uuden sukupolven radio- ja baseband-tuotteiden lanseerauksen yhteydessä.

    Reply
  21. Tomi Engdahl says:

    Nokia kiihdytti Itävallassa 2 gigabittiin sekunnissa
    https://etn.fi/index.php/13-news/14395-nokia-kiihdytti-itaevallassa-2-gigabittiin-sekunnissa

    Nokia ja A1 Austria ilmoittivat tänään, että ne ovat onnistuneesti demonneet kolman kantoaallon 5G SA -yhteyttä kokeiluverkossa Itävallassa. Onnistuneessa kokeessa datanopes verkosta päätelaitteeseen kasvoi 2 gigabittiin sekunnissa.

    Kokeilussa käytettiin Nokian AirScale 5G -kantataajuuslaskentaa, 5G-älypuhelinta ja kaupallista 5G-reititintä A1 Austian 5G-verkossa. Linkissä yhdistettiin onnistuneesti kaksi Mid-band -alueen kantoaaltoa 3,5 GHz:n TDD-kaistalla (n78) ja yksi kantoaalto 2100 MHz:n FDD-kaistalla (n1). Näin kaistaan kokonaisleveydeksi saatiin 160 megahertsiä.

    Monet operaattorit luottavat alle 6 GHz:n taajuuksiin 5G:ssä. Alemmat taajuuskaistat tarjoavat parhaan peiton ja korkeammat taajuuskaistat mahdollistavat tyypillisesti suuremman suorituskyvyn, kun taas keskikaistataajuudet tarjoavat hyvän yhdistelmän molempia.

    Reply
  22. Tomi Engdahl says:

    Keysight’s S8704A protocol conformance toolset was used to submit the first verifications of 3GPP Release 16 Dual-Connectivity protocol test cases….

    Keysight submits 3GPP R16 Dual-Connectivity test cases
    https://www.edn.com/keysight-submits-3gpp-r16-dual-connectivity-test-cases/

    Keysight’s S8704A protocol conformance toolset was used to submit the first verifications of 3GPP Release 16 Dual-Connectivity protocol test cases. These test cases are for devices supporting the 5G E-UTRAN New Radio (NR) Dual Connectivity (EN-DC) configuration for 5G NR non-standalone devices. The EN-DC configuration enables operators to use 4G (E-UTRAN) and 5G (NR) network resources simultaneously.

    The test cases, submitted for verification to 3GPP RAN5, allow chipset and device vendors to verify functionality related to the Multi-Radio Dual Connectivity (MR-DC) and NR Carrier Aggregation (CA) enhancements defined in R16. Implementing R16 improves 5G network coverage, capacity, security, and latency, as well as 5G device power consumption, mobility, and reliability.

    The S8704A enables users to verify the protocol signaling implementation of a design and confirm compliance to 3GPP 5G specifications.

    Reply
  23. Tomi Engdahl says:

    Nokia and Rohde & Schwarz jointly explore feasibility of drone-based network measurement solution
    https://www.nokia.com/about-us/news/releases/2022/12/13/nokia-and-rohde-schwarz-jointly-explore-feasibility-of-drone-based-network-measurement-solution/

    Press Release

    Nokia and Rohde & Schwarz jointly explore feasibility of drone-based network measurement solution

    Companies to deliver first prototype with embedded 4.9G/LTE and 5G network measurement software within an unmanned aerial vehicle (UAV).
    It will use QualiPoc software from Rohde & Schwarz integrated in Nokia Drone Networks, which includes the Digital Automation Cloud private wireless network and MX Industrial Edge.
    The solution reduces drone weight and power consumption resulting in increased flight times for CSP public and enterprise private wireless networks measurement activities.

    Reply
  24. Tomi Engdahl says:

    Liikenteen turvallisuus paranee 5G-verkon avulla – kehitettyjä palveluita demonstroitiin talvisissa olosuhteissa Sodankylässä
    Liikenneturvallisuuden parantamiseen tähtäävässä projektissa siirryttiin teoriasta käytäntöön, kun kehitettyjä palveluita demonstroitiin talvisissa olosuhteissa Sodankylässä. Demopäivän aikana yleisölle esiteltiin erilaisia palvelukonsepteja, joiden tavoitteena on ehkäistä liikenneonnettomuuksia toimittamalla ajoneuvoille ajantasaisia sää- ja turvallisuustietoja 5G-verkossa.
    https://www.ilmatieteenlaitos.fi/tiedote/2r7sXclWOO1CjxoNvTHISY?fbclid=IwAR2vwYSfPuf6EaG93IOduyRDcTaWAkF7G9qy-Z7wbxZgj1agE4PpG4ym9GQ

    Reply
  25. Tomi Engdahl says:

    Lähes puolet Euroopan 5G-datasta menee yhä kiinalaisten laitteiden läpi
    https://etn.fi/index.php/13-news/14434-laehes-puolet-euroopan-5g-datasta-menee-yhae-kiinalaisten-laitteiden-laepi

    Pari vuotta sitten Ruotsi kielsi Huawein ja ZTE:n verkkolaitteiden käytön 5G-verkoissaan. Tanskalaisen konsulttiyritys Strand Consultin raportti kuitenkin kertoo, että kiinalaisilla toimittajilla on yli 50 prosentin osuus 5G-markkinoista kahdeksassa Euroopan maassa.

    Joulun aikaan julkistettu raportti osoittaa, että niiden maiden määrä, joissa kiinalaiset yritykset toimittivat yli 50 prosenttia matkaviestinverkkojen radio-osasta, väheni vuoden aikana 16:sta kahdeksaan. Niiden maiden määrä, joissa on vain kiinalaisia ​​radiolaitteita, on pudonnut kolmesta yhteen.

    11 Euroopan maassa 5G-verkot on rakennettu ilman kiinalaisia ​​5G-laitteita. Samaan aikaan suurten maiden, kuten Saksan, Italian, Puolan, Espanjan, Portugalin ja Itävallan operaattoreilla on paljon Huawein ja ZTE:n radiolaitteita. Strand Consultin mukaan tämä tarkoittaa, että 41 prosenttia Euroopan 5G-liikenteestä kulkee kiinalaisten laitteiden kautta.

    Reply
  26. Tomi Engdahl says:

    Allison Johnson / The Verge:
    After years of hype, 5G took a back seat at CES 2023, as the industry focuses on laying the groundwork for self-driving cars, AR, and IoT in smart cities

    Where was 5G at CES?
    / After years of hype, 5G was seemingly a no-show at CES 2023. But it’s not exactly gone.
    https://www.theverge.com/2023/1/7/23541118/5g-ces-2023-qualcomm-iot-wireless

    When it wasn’t being overshadowed by covid resurgences, CES, for the past few years, has partially functioned as a big 5G pep rally. But as cars, smart home standards, and so many screens took center stage at this year’s show, 5G took a back seat.

    Verizon CEO Hans Vestberg gave a very similar keynote speech in 2019 and 2021, showing off all of the things 5G would supposedly enable: remote surgery, self-driving cars, augmented reality, and so on. T-Mobile CEO Mike Sievert was slated to deliver the 2022 keynote before omicron put a stop to that. But in 2023, 5G was hardly a footnote on the speaker roster.

    Why? It’s not as if all of the things we were promised with 5G have come to pass. I don’t remember getting into a fully autonomous vehicle to get to my robot-performed surgery. At best, what we have now is a slightly faster version of 4G. So why did the pep rally stop?

    For starters, we’re all sick of hearing about it. And CES has a unique way of rallying around a technology one year and then leaving it for dead the next.

    More than any of the above, the time has passed where wireless CEOs feel they need to sell 5G to the general public (and, of course, their shareholders). It’s not a niche new service anymore; it’s the default option (in the US at least). Basically every new phone sold on their shelves is 5G compatible, and mid-band 5G finally exists on all major carriers in large parts of the US. The next time you walk into a wireless store to buy a new phone or sign up for a new service, you’ll have a very hard time leaving without a 5G device and plan, regardless of whether you really wanted them.

    So now we have 5G phones in our hands, 5G networks are here, and… not much has changed. Maybe web pages load a little faster — hardly robot surgery. What gives? The thing is, rolling out 5G is a long ongoing process. The hype made it seem like all the good stuff was just around the corner, but truthfully, it was (and still is) years and years away.

    We’re only now entering the phase of 5G development where the industry moves beyond mobile broadband improvements (all that talk of blazing-fast wireless data you’ve been hearing about ad nauseam) and focuses more on laying the groundwork for things like self-driving cars, augmented reality, and expanding IoT in smart cities and industry. You know, all the stuff we were promised 5G would do. According to a couple of network executives that I talked to at the end of 2022, moving network functions closer to the end user will play a big role in unlocking these new capabilities.

    Reply
  27. Tomi Engdahl says:

    Yksityisverkolla voi varautua häiriötilanteisiin ja lisätä kyberturvaa
    - – toimii 5g-verkon päällä ympäri Suomen
    https://www.tivi.fi/uutiset/tv/33ab5f70-158c-4b17-afed-3fdf05ac6472
    Privaattiverkko on mobiili yksityisverkko, eli esimerkiksi yrityksen tai yhteisön omassa käytössä olevaa suljettu mobiiliverkko. Sen avulla voi lisätä esimerkiksi yrityksen tai teollisuuden kyberturvallisuutta, sillä tietoturva on suljetussa verkossa helpompi varmistaa

    Reply
  28. Tomi Engdahl says:

    DNA: Viisi millisekuntia voi joskus pelastaa hengen
    https://etn.fi/index.php/13-news/14468-dna-viisi-millisekuntia-voi-joskus-pelastaa-hengen

    DNA on ottanut käyttöön virtuaalisissa privaattiverkoissa hyödynnettäviä alueellisia asiakasliikenteen yhdyspisteitä kahdeksalla eri paikkakunnalla ympäri maan. Kun datan ei tarvitse liikkua Helsingin kautta, jokaisessa datapaketissa säästetään viisi millisekuntia. Joskus sen merkitys voi olla ratkaisevan tärkeä.

    DNA:n virtuaaliset privaattiverkot toimivat ohjelmisto-ohjatusti olemassa olevan 5G-verkon päällä. Teknisen johtajan Ville Virtasen mukaan yhteyspisteen tuominen käyttäjien lähelle vähentää viivettä aina mobiiliteknologia sukupolvesta riippumatta. – Esimerkiksi kahden Jyväskylässä olevan mobiilin välisen liikenteen ei tarvitse kulkea esim. Helsingin kautta, eli viive pienenee noin 5 millisekunnin verran jokaiselle datapaketille ja osalle asiakkaidemme käyttötapauksista tämä on todella merkityksellistä.

    - Eräässä ambulansseja koskevassa tapauksessa privaattiverkkomme korjasi hitauden, jonka syynä oli tietojärjestelmän vaatimat peräkkäiset tietokantakyselyt. Dataa liikkui siis tietokannan ja ambulanssin välillä edestakaisin, jolloin pienikin viive yhteydessä saattoi moninkertaistaa lopullisen viivästyksen. Nopeasti toimiva privaattiverkko voi siis kriittisessä tilanteessa pelastaa jopa hengen, kun potilastiedot tarvitaan vauhdilla.

    Virtasen mukaan vastaavia kovia vaatimuksia verkon viiveettömälle tai paikalliselle toiminnalle on terveydenhuollon lisäksi esimerkiksi turvallisuuden, teollisuuden automaation, kaivosten, tehtaiden ja älyliikenteen puolella. Mahdollisia käyttökohteita privaattiverkoille on siis valtavasti.

    Toteutuksen mahdollistavat asiakasliikenteen yhdyspisteet valmistuivat vuoden 2022 aikana Helsingissä, Tampereella, Lahdessa, Kuopiossa, Jyväskylässä, Vaasassa, Turussa ja Oulussa. Hajautettujen yhdyspisteiden ansiosta virtuaalisia privaattiverkkoja voidaan nyt rakentaa laajasti eri puolille maata.

    - Nämä kaupungit ovat valikoituneet datakeskusten sijainniksi ensisijaisesti kysynnän perusteella.

    Julkisessa mobiiliverkossa data joutuu toisinaan kulkemaan fyysisesti pitkän matkan verkon solmupisteisiin, joista liitytään erilaisiin datapalveluihin. Tällaisia keskitettyjä solmukohtia on Suomessa vain muutama, joten data voi kulkea jopa tuhansia kilometrejä, vaikka kyseessä olisi viestintä kahden vierekkäisen laitteen välillä. Solmukohdat ovat kuitenkin välttämättömiä, sillä niissä yhdistyvät esimerkiksi eri operaattoreiden verkot. Käyttäjälle suuri etäisyys solmupisteeseen saattaa näkyä sovelluksen hitaana vasteena ja pidempinä latausaikoina.

    Privaattiverkossa data ei sen sijaan liiku fyysisesti kuin aivan välttämättömän matkan. Tähän viitataan termillä reunalaskenta. – Datan käsittely tapahtuu asiakasverkon reuna-alueilla, paikallisesti. Tiedonkäsittely nopeutuu ja on myös tietoturvallisempaa. Kaikki tapahtuu siis paikallisesti, eikä datan tarvitse käydä pilvessä – eli mahdollisesti hyvinkin kaukana sijaitsevissa datakeskuksissa, Virtanen päättää.

    Reply
  29. Tomi Engdahl says:

    Mercury Drops First Signal-Processing Board with Intel’s Latest Direct RF Technology
    Jan. 24, 2023
    Direct RF technology means fewer antennas and great reductions in system complexity for signal processing at the tactical edge.
    https://www.mwrf.com/markets/defense/article/21258673/microwaves-rf-mercury-drops-first-signalprocessing-board-with-intels-latest-direct-rf-technology

    Mercury Systems launched its DRF3182 Direct RF Processing Module, the first standard product purpose-built for the aerospace and defense industry that leverages Intel’s new Stratix 10 AX SoC field-programmable gate array (FPGA).
    Who Needs It & Why?

    Designed for radar and electronic-warfare (EW) applications, the DRF3182 with Direct RF technology can enhance a wide range of applications including software-defined radio and communications.Considering today’s rapidly evolving threat environment, advanced processing capabilities need to be deployed at the tactical edge. Mercury’s collaboration with Intel ensures that modern EW and radar systems can provide a decision advantage to U.S. and allied forces and make the world a safer, more secure place.

    Under the Hood

    Mercury’s DRF3182 Direct RF Processing Module features:

    Four 10-bit ADC channels and four 10-bit DAC channels at 51.2 Gsamples/s
    Intel Stratix 10 AX-Series SoC FPGA
    Ku-band range from 2 to 18 GHz
    Six 100GigE data-plane interfaces for an aggregate throughput rate of 75 Gb/s
    3U OpenVPX form factor

    The DRF3182 Direct RF Processing Module is now available for commercial order.

    Reply
  30. Tomi Engdahl says:

    Lisää 5G-kännyköitä – kellopuhelimia aikuisille
    https://www.uusiteknologia.fi/2023/02/01/lisaa-5g-kannykoita-kellopuhelimia-aikuisille/

    5G-puhelimet nostivat kännykkämarkkinoiden arvoa tammikuussa. Myydyin malli oli esimerkiksi kuluttajille Elisalla OnePlus Nord CE 2 Lite 5G ja yritysasiakkaille Samsung Galaxy A32 5G Enterprise Edition. Uutta oli kellopuhelimien yleistyminen lasten lisäksi aikuisilla.

    Reply
  31. Tomi Engdahl says:

    Japanilaiset kutistivat 5G-sisätukiaseman
    https://etn.fi/index.php/13-news/14543-japanilaiset-kutistivat-5g-sisaetukiaseman

    Japanilaiset ovat onnistuneet kehittämään sisätiloihin erittäin pienikokoisen 5G-tukiaseman. Se toimii 28 gigahertsin alueella ja on ensimmäinen tämän taajuusalueen tukiasema, joka säteilee monelle sektorille.

    Asialla ovat Yokohaman kansallinen yliopisto, NTT DoCoMo, NIHON DENGYO KOSAKU ja Fujitsu- Tukiaseman laitteisto on kooltaan vain kymmenesosa aiemmista vastaavista, joten sen asentaminen on helppoa. Lisäksi tukiaseman virrankulutus on pienempi.

    Monisektoriantenni jakaa ympäröivän 360 asteen tilansa useisiin alueisiin (sektoreihin) radioaaltojen lähettämistä ja vastaanottamista varten samanaikaisesti ja itsenäisesti kussakin sektorissa. Demonstraatiossa käytetty antenni sisälsi 12 säteittäiseen kuvioon järjestettyä suuntaelementtiä, joista jokainen lähetti ja vastaanotti tehokkaasti radioaaltoja.

    Reply

Leave a Reply to Tomi Engdahl Cancel reply

Your email address will not be published. Required fields are marked *

*

*