Self driving cars failed 2020

I was had planned to do a long post on self-driving cars a quite long time. I was planning to do one this spring, but I might not do that, because it seems that predictions that self-driving cars would be here in 2020 were far too rosy. Five years ago, several companies including Nissan and Toyota promised self-driving cars in 2020. So it may be wise to take any new forecasts with a grain of salt. Hare is a worth to check out article of the current status of self-driving cars:

Surprise! 2020 Is Not the Year for Self-Driving Cars
https://spectrum.ieee.org/transportation/self-driving/surprise-2020-is-not-the-year-for-selfdriving-cars

In March, because of the coronavirus, self-driving car companies, including Argo, Aurora, Cruise, Pony, and Waymo, suspended vehicle testing and operations that involved a human driver. Around the same time, Waymo and Ford released open data sets of information collected during autonomous-vehicle tests and challenged developers to use them to come up with faster and smarter self-driving algorithms.

It seems that the self-driving car industry still hopes to make meaningful progress on autonomous vehicles (AVs) this year, but the industry is slowed by the pandemic and facing a set of very hard problems that have gotten no easier to solve over the years.

15876629484644888535155594488473

1,788 Comments

  1. Tomi Engdahl says:

    LiDAR Technology
    LiDAR provides 3D imaging support to applications like automotive and robotics.
    https://www.electronicdesign.com/magazine/51273

    Reply
  2. Tomi Engdahl says:

    Automotive Industry Accelerates to an Electrified Future
    Aug. 22, 2022
    The century-long reign of the internal-combustion-engine powertrain now has an expiration date.
    https://www.electronicdesign.com/markets/automotive/article/21249164/tektronix-automotive-industry-accelerates-to-an-electrified-future?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_campaign=CPS220829121&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  3. Tomi Engdahl says:

    https://etn.fi/index.php/13-news/13940-yhdellae-latauksella-yli-tuhat-kilometriae

    Sähköauton suurin haaste on latausinfran lisäksi kantama, latauspaikkojen etsintä aiheuttaa tunnetusti jopa ahdistusta. Kiinalainen Svolt Energy on kehittänyt 20 ampeeritunnin rikkiakun prototyypin, jonka energiatiheys on 350-400 Wh/kg. Akun avulla olisi mahdollista ajaa sähköautolla yhdellä latauksella jopa yli 1000 kilometriä.

    Kiinalaisen sähköautojen tekniikan kehitystä seuraavan ChEVPost-julkaisun mukaan Svolt Energy kertoo, että rikkiakkuteknologiaa on ollut vaikea kehittää. Nyt yhtiöllä on kuitenkin kyky tuottaa useita kilogrammoja kiinteitä elektrolyyttimateriaaleja ja se pystyy valmistamaan volyymeissä elektrolyyttikalvoja. Yhtiölle on myönnetty 109 akkuteknologian patenttia, joista 93 kattaa valmistusprosessin.

    Reply
  4. Tomi Engdahl says:

    Ladattavan hybridin suosio romahtaa
    https://etn.fi/index.php?option=com_content&view=article&id=13946&via=n&datum=2022-08-31_15:10:15&mottagare=30929

    Uusien autojen rekisteröinnit laskivat edelleen Euroopassa heinäkuussa. Täyssähköisten myynnin kasvu jatkuu, vaikka onkin hidastunut. Ladattavan hybridin suosio sen sijaan romahti. Syynä on PHEV-tekniikan putoaminen kannustimien piiristä monissa Euroopan maassa.

    Heinäkuussa Euroopassa rekisteröitiin 866 038 uutta henkilöautoa. Määrä on 10 prosenttia vähemmän kuin vuotta aikaisemmin. Luvut ovat nyt samalla tasolla kuin tammi-heinäkuussa 2020 eli komponenttipula on rokottanut autokauppaa saman verran kuin koronapandemia.

    Euroopassa myytiin heinäkuussa 157 614 ladattavaa autoa. Määrä on kaksi prosenttia pienempi kuin kesäkuussa. Suurin syy tähän löytyy ladattavien hybridien myynnin 22 prosentin laskusta. Ilmiö ei koske kaikkia maita. Esimerkiksi Suomessa myytiin heinäkuussa 1131 ladattavaa hybridiä, kun täyssähköautoja myytiin samaan aikaan 862 kappaletta.

    Reply
  5. Tomi Engdahl says:

    We Can’t Switch To Electric Cars Until We Get More Copper
    https://hackaday.com/2022/08/31/we-cant-switch-to-electric-cars-until-we-get-more-copper/

    Reducing emissions from human activity requires a great deal of effort in many different sectors. When it comes to land transport, the idea is generally to eliminate vehicles powered by combustion engines and replace them with electric vehicles instead. At a glance, the job is simple enough. We know how to build EVs, and the technology is getting to the point where they’re capable of replacing traditional vehicles in many applications.

    Of course, the reality is not so simple. To understand the problem of converting transportation to electric drive en masse, you have to take a look at the big numbers. Focus in on the metrics of copper, and you’ll find the story is a concerning one.

    Raw Materials Are Key

    Switching over to EVs isn’t just as simple as drawing up the blueprints for new models and churning them out. Unfortunately, the world’s industrial infrastructure has been built up and honed over the last century or so to build enough cars, trucks, and buses to suit the world’s demands, give or take some wobbles with supply chains in the last few years. There are sprawling factories located all over the world, dedicated solely to the tasks of churning out engines, fuel systems, and chassis for these vehicles, numbering in the millions each year.

    A coming copper shortage could derail the energy transition, report finds
    https://www.cnbc.com/2022/07/14/copper-is-key-to-electric-vehicles-wind-and-solar-power-were-short-supply.html

    Demand for copper is booming, but supply can’t keep up, jeopardizing net-zero emissions targets, according to a new report from S&P Global.
    Copper is key to electric vehicles, wind and solar power, as well as the infrastructure that transports and stores renewable energy.
    S&P Global’s new report forecasts copper demand nearly doubling by 2035.
    “The energy transition is going to be dependent much more on copper than our current energy system,” said Daniel Yergin, vice chairman at S&P Global.

    Reply
  6. Tomi Engdahl says:

    Ladattavan hybridin suosio romahtaa
    https://etn.fi/index.php/13-news/13946-ladattavan-hybridi-suosio-romahtaa

    Uusien autojen rekisteröinnit laskivat edelleen Euroopassa heinäkuussa. Täyssähköisten myynnin kasvu jatkuu, vaikka onkin hidastunut. Ladattavan hybridin suosio sen sijaan romahti. Syynä on PHEV-tekniikan putoaminen kannustimien piiristä monissa Euroopan maassa.

    Heinäkuussa Euroopassa rekisteröitiin 866 038 uutta henkilöautoa. Määrä on 10 prosenttia vähemmän kuin vuotta aikaisemmin. Luvut ovat nyt samalla tasolla kuin tammi-heinäkuussa 2020 eli komponenttipula on rokottanut autokauppaa saman verran kuin koronapandemia.

    Reply
  7. Tomi Engdahl says:

    What’s Driving EVs to Higher Battery Voltages?
    Aug. 30, 2022
    Electric-vehicle makers are turning to 800-V systems to solve range and charging time issues that have created barriers with consumers and slowed the rollout of EVs. Here’s how they work.
    https://www.electronicdesign.com/markets/automotive/article/21249715/power-integrations-whats-driving-evs-to-higher-battery-voltages?utm_source=EG+ED+Analog+%26+Power+Source&utm_medium=email&utm_campaign=CPS220831047&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    Design considerations for the power solution in an 800-V system.
    How an 800-V bus system impacts EV design.
    How 800 V enables reduced charging time.
    How InnoSwitch3-AQ ICs deliver solutions for 400-, 600-, and 800-V EV designs.

    Many countries are enacting legislation to increase the number of electric vehicles (EVs), with the goal of phasing out or eventually banning petrol and diesel vehicles. While early adopters may have been motivated by environmental benefits, a sizable portion of the market also remains concerned with range limitations and charging times of EVs.

    The automotive industry is being challenged to innovate and create solutions that appeal to a larger audience, which is driving the trend to higher battery voltages. Most of the passenger EVs on the road today run using 400-V batteries. EV buses and trucks are 600-V-class vehicles, and 800 V is starting to be adopted for passenger vehicles.

    The introduction of 800-V systems, a significant step up from existing 400-V systems, is happening faster than many predicted. What are the benefits of an 800-V system, and how do they help solve some of the problems that have been barriers to consumers and slowed the rollout of electric vehicles?

    Reply
  8. Tomi Engdahl says:

    Suo siellä, vetelä täällä. Sähköautojen piti olla ratkaisu fossiilisten polttoaineiden korvaamiseen ja kallistumiseen, mutta kuinkas sitten kävikään?
    https://www.maaseuduntulevaisuus.fi/koneet-ja-autot/9845def8-7a8e-4ef6-b966-9a7acc0ab0ca

    Reply
  9. Tomi Engdahl says:

    Headlight Tech Helps Keep Drivers’ Eyes on the Road
    Sept. 2, 2022
    To make night driving easier, Ford Europe is working on “high-resolution” headlights that can project signs and data such as weather information, directions, and speed limits directly in the driver’s line of sight.
    https://www.electronicdesign.com/markets/automotive/article/21249989/electronic-design-headlight-tech-helps-keep-drivers-eyes-on-the-road?utm_source=EG+ED+Analog+%26+Power+Source&utm_medium=email&utm_campaign=CPS220902054&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  10. Tomi Engdahl says:

    Reuters:
    China says automakers now require licenses for “smart cars” collecting mapping data, which could further complicate the local operations of companies like Tesla

    China says automakers must have licences for mapping data in smart cars
    https://www.reuters.com/business/autos-transportation/china-says-automakers-must-have-licences-mapping-data-smart-cars-2022-09-01/

    SHANGHAI/BEIJING, Sept 1 (Reuters) – China has said that automakers must apply for licences to collect geographic data using sensors on their intelligent vehicles,

    Reply
  11. Tomi Engdahl says:

    What’s Driving EVs to Higher Battery Voltages?
    Aug. 30, 2022
    Electric-vehicle makers are turning to 800-V systems to solve range and charging time issues that have created barriers with consumers and slowed the rollout of EVs. Here’s how they work.
    https://www.electronicdesign.com/markets/automotive/article/21249715/power-integrations-whats-driving-evs-to-higher-battery-voltages?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_campaign=CPS220902077&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    Design considerations for the power solution in an 800-V system.
    How an 800-V bus system impacts EV design.
    How 800 V enables reduced charging time.
    How InnoSwitch3-AQ ICs deliver solutions for 400-, 600-, and 800-V EV designs.

    The automotive industry is being challenged to innovate and create solutions that appeal to a larger audience, which is driving the trend to higher battery voltages. Most of the passenger EVs on the road today run using 400-V batteries. EV buses and trucks are 600-V-class vehicles, and 800 V is starting to be adopted for passenger vehicles.

    The introduction of 800-V systems, a significant step up from existing 400-V systems, is happening faster than many predicted.

    Motion relies on the interaction of the rotor magnetic field and a rotating magnetic field generated by time-controlled currents in the stator windings. As the motor operating voltage increases for a given input power, it reduces the input RMS current and, therefore, the stator winding copper losses. Losses are typically reduced by a factor of 4 using an 800- versus a 400-V supply.

    This offers the opportunity to reduce the copper winding wire diameter, which decreases the overall volume as well as increases the packing efficiency, allowing for smaller motors. The same lower current requirements in an 800-V system reduce not just the motor copper losses, but loss in the entire system wiring loom, introducing weight, space, and cost savings.

    Typically, 800-V systems also move from silicon-based IGBTs to silicon-carbide (SiC) MOSFETs. SiC devices provide much higher switching speeds and thus lower switching losses. As a result, the operating frequency will increase, which further reduces motor losses due to reduced harmonic currents.

    Lower weight improves handling and acceleration, valuable in the high-end sports car market. Together with reduced losses, it improves range, which directly relates to battery and therefore vehicle cost. Liberated space can be used to increase the size of the battery pack and, in turn, the range, or it can be allocated to increased passenger cabin space.

    800 V Enables Reduced Charging Time

    Charging time is a challenge for consumers, as well as commercial vehicles.

    How does an 800-V architecture help? As we have noted before, doubling the voltage cuts the current in half for the same power. During charging, heat dissipation is a limitation both for the charging cable and the vehicle charger inlet and internal wiring.

    Moving from 400 V to 800 V allows for doubling of the charging rate for the same losses. This has several benefits.

    Both Porsche and Kia have new all-electric vehicles whose range is starting to approach the median range for gas cars, and with charging times more comparable to refueling at a gas station with a quick stop to pick up supplies. The newest range of charging stations deployed have a 400-kW maximum rating, which is more than enough for the 800-V architecture.

    Porsche’s fully electric sports car, the Taycan, has a range of 420 km (260 miles). It uses the 800-V battery architecture and can charge from 5% to 80% in just 22.5 minutes on a fast-charging station at 300 A (240 kW). It’s still capable of using 400-V charging stations, which would take around 90 minutes. Kia announced its EV6 800-V-architecture car, which charges from 10% to 80% in just 18 minutes using a maximum power of 239 kW, with an extended range version that reaches 480 km (300 miles).

    800-V Adoption Has Been Faster than Expected

    The automotive market has adopted the 800-V architecture faster than was initially anticipated. Porsche led the way, but it’s not just sports cars—Kia and several China manufacturers now offer 800-V vehicles. As is typical for the automotive market, innovations start in the higher-end vehicles and slowly work their way down to the mass market as the technology becomes more affordable. The benefits offered by 800-V systems include cost savings that the mid-range consumer market can utilize much sooner than was first thought.

    As the automotive market embraces the 800-V architecture, we will undoubtedly see companies pushing the benefits of higher-voltage systems even further. These benefits scale up—thus, 900 V and beyond can increase these further, pushing range, weight, and charging times even more. The infrastructure will need to keep pace; the new 400-kW charging stations are already enabling this direction.

    Design Considerations for the Power Solution in an 800-V System

    High-voltage connected subsystems in an EV typically require a high- to low-voltage power supply. The increase to 800 V requires much higher isolation and voltage ratings.

    An EV battery pack consists of many individual cells connected in a series/parallel combination. Each individual cell operates over a voltage range of 3.1 to 4.2 V. For a nominal 800-V system, there are approximately 198 cells in series, giving an overall pack voltage of 610 to 835 V.

    An additional 20 to 30 V are typically added due to voltage rise during regenerative braking, giving a maximum voltage of 865 V. The power-supply internal switch must be rated significantly above this voltage. For a flyback converter, an additional 150 to 200 V must be added, giving a switch stress of 1065 V. Applying the usual 20% derating yields a specification of at least 1.33 kV.

    Another important design consideration is the need for a low-voltage startup, typically 30 to 40 V. The vehicle safety systems need to power-up first, to make sure all of the control electronics are operational before anything can start to move, or faults potentially occur. Designing a power supply that runs from 30 V to >900 V can be challenging.

    Reply
  12. Tomi Engdahl says:

    Are we there yet? The futuristic driving experience is just around the bend
    https://www.arrow.com/en/research-and-events/articles/molex-are-we-there-yet-the-futuristic-driving-experience

    Now is an exciting time for the automotive industry. A range of new technologies have matured at the same time, creating fantastic opportunities for innovations. With manufacturers taking advantage of the latest developments, the future of driving will change significantly. In this article, we will look at some key trends and how they will influence the way we travel in the future.

    Vehicle Connectivity

    For decades, in-vehicle systems have not been able to share information with the outside world. The latest wireless connectivity changes this and has created a new acronym in the automotive world—C-V2X, which stands for “cellular vehicle-to-X,” sometimes known as vehicle to everything. Many modern vehicles are employing in-car sensors to create a picture of the environment around them, using this information to help navigate and avoid potential hazards. C-V2X technology allows vehicles to share the information gathered with other road users, including other vehicles, pedestrians with 5G smartphones and traffic control infrastructure.

    This sharing of data over the network will allow other road users to make split-second decisions to improve traffic flow and avoid accidents. The U.S. Department of Transportation estimates that if C-V2X technology were to be widely adopted, road traffic accidents potentially could be reduced by more than 13%. The key to making this system reach its potential is the speed of response. Vehicles must be equipped with high-speed computing systems that can process and then act upon the huge volume of information that is collected by sensors. The data will often need to be transmitted to communication networks and infrastructure outside the vehicle. This requires edge computing—deploying sophisticated computing equipment close to the point of need. This means that cars are becoming their own little data centers, gathering and processing huge amounts of data onboard to keep latency to a minimum. A fully functioning C-V2X network is vital to this rapid sharing of information. The latest 5G infrastructure, including connectors and antennae, enables data sharing at the highest possible speeds.

    eMobility and Electrification

    Battery-powered vehicles are not new, but the recent growth of electric and hybrid technology has created huge changes in the automotive industry. We are being encouraged to reduce or eliminate our need for fossil fuels, and electric vehicles will play a large role in achieving this goal.

    One of the barriers to full adoption of electric vehicles is convenience. To make them attractive to drivers, manufacturers need to make electric vehicles that are as convenient and simple to use as gasoline-powered cars. The best electric vehicles of today can travel between 200 and 300 miles. Before electric cars can “compete” with conventional vehicles, though, this range needs to increase to match the performance of gasoline-powered vehicles.

    In-Vehicle Experience

    The automotive industry recognizes that the car of the future will be a “third living space.” The time spent in our cars will be eclipsed only by the time spent at home or work, and so manufacturers are designing them to be safe and appealing spaces.

    Infotainment systems have come a long way since the first in-car radios were introduced. They have evolved far beyond those early developments and no longer simply provide entertainment for the driver. Instead, the use of touchscreens and dynamic controls means that these systems perform a central role in the operation of the car.

    Autonomous Vehicles

    Autonomous vehicles will take these technologies a step further. With ADAS already providing sophisticated solutions for road safety, the technologies that can help drive the vehicle are becoming available.

    A recent survey of automotive professionals revealed that over four-fifths of experts believe level IV autonomous driving will be available as a standard feature in new vehicles within the next 10 years. Self-driving or autonomous vehicles certainly capture the attention of the public, and manufacturers are developing robust and secure solutions to help the public embrace this technology.

    The autonomous vehicle represents a combination of the latest automotive trends into a single product. The rise of electric power, the use of C-V2X connectivity and the introduction of advanced safety features for the driver are all preparing the way for the self-driving car. It is rare that so many new innovations mature at the same time to create such a reevaluation of how we travel. These trends represent the future of the automotive industry, and Molex is developing products and strategies that will enable manufacturers to employ these new technologies to their full potential. With a product range encompassing connectors, cabling and antennae, Molex is at the forefront of the automotive industry.

    Reply
  13. Tomi Engdahl says:

    Hyundailta erilainen sähköauto myyntiin
    https://www.uusiteknologia.fi/2022/09/08/hyundailta-erilainen-sahkoauto-myyntiin/

    Perinteisten täyssähkö- ja hybridiautojen rinnalle ovat tulossa myös ensimmäiset vetyä hyödyntävät polttokennoautot. Hyundai Nexo on syys-lokakuussa jo koeajettavissa ja myös hinnoiteltu. Vetyautojen laajentumisen ongelmana voi kuitenkin olla vedyn vähäinen jakeluverkosto Suomessa.

    Hyundai Nexo on korealaisyrityksen toisen sukupolven SUV-korimallin polttokennokäyttöinen sähköauto (FCEV). Vetyä käyttävän auton toimintamatka on 666 kilometriä WLTP-mittaustavan mukaan. Vetytankin koko on 156,6 l / 6,33 kg. Auton yhdistetty vedynkulutus on 0,95 kg / 100 km ja CO2-päästöt 0 g/km WLTP-mittaustavan mukaan.

    Tehoa Hyundai Nexossa on 163 hevosvoimaa ja hinta on 79 990 euroa ja tilattavissa myös Suomessa. Autot valmistetaan Ulsanissa, Etelä-Koreassa. Vuosina 2019 ja 2020 niitä valmistui 6000 kappaletta, joista Eurooppaan tuotiin tuhat autoa ja niistä yksi Suomeen. Hyundain lisäksi ensimmäiset vetykäyttöiset polttokennoautot ovat olleet jo myynnissä pieninä sarjoina Euroopassa, Japanissa ja Yhdysvalloissa.

    Motivan sivuston mukaan polttokennoautojen suorituskyky lähenee polttomoottoriauton suoritusarvoja. Toimintasäde yhdellä tankkauksella vaihtelee 300–500 kilometriin. Testeissä on päästy jopa 700 kilometrin ajomatkoihin. Kaasumainen tai nesteytetty vety varastoidaan vetyautoissa alustassa oleviin säiliöihin, joista se johdetaan kaasumaisena polttokennoon. Kennossa vety reagoi hapen kanssa, jolloin vapautuu elektroneja ja syntyy sähkövirtaa. Prosessin sivutuotteina syntyy lämpöä sekä puhdasta vesihöyryä, joka johdetaan ulos kennosta.

    Reply
  14. Tomi Engdahl says:

    70 senttiä kilowattitunnilta on sähköautoilijan kipuraja
    https://etn.fi/index.php/13-news/13974-70-senttiae-kilowattitunnilta-on-saehkoeautoilijan-kipuraja

    Bensalitran saa taas alle 2 eurolla, kun samaan aikaan sähkön hinta heilahtelee voimakkaasti. Milloin sähköautolla ajamisesta tulee bensa-autoa kalliimpaa? Jopa Helsingin Sanomat julkisti sivuillaan laskurin, josta asia selviää. Normaalit kilometrit vuodessa ajavalle kipuraja sähkön hinnassa on noin 70 senttiä kilowattitunnilta.

    Sähkön hinnassa maksetaan sekä energiasta, sähkönsiirrosta että verosta. Jos on onnistunut tekemään edullisen kiinteähintaisen sopimuksen, maksaa tällä hetkellä karkeasti 10 senttiä kilowattitunnilta. Yleensä ajatellaan, että sähköauto kuluttaa 20 kilowattituntia sadalla kilometrillä. Tällöin ajo maksaisi kaksi euroa.

    Samaan aikaan bensa-auto kuluttaa esimerkiksi 7,5 litraa sadalla. Hinnaksi tulee näin 15 euroa. Summat ovat tietysti vain suuntaa-antavia eivätkä pidä sisällään erilaisia käyttömaksuja, veroja ja hankintahintoja. Bensapihillä pikkuautolla pääsee kympin pintaan.

    Jos ajaa 20 000 kilometriä vuodessa ja bensa hinta on 2 euroa litra, kipuraja pelkästään käyttövoiman hinnassa on noin 70 senttiä kilowattituntia.

    Reply
  15. Tomi Engdahl says:

    Headlight Tech Helps Keep Drivers’ Eyes on the Road
    Sept. 2, 2022
    To make night driving easier, Ford Europe is working on “high-resolution” headlights that can project signs and data such as weather information, directions, and speed limits directly in the driver’s line of sight.
    Murray Slovick
    https://www.electronicdesign.com/markets/automotive/article/21249989/electronic-design-headlight-tech-helps-keep-drivers-eyes-on-the-road?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_campaign=CPS220907141&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  16. Tomi Engdahl says:

    https://www.uusiteknologia.fi/2022/09/08/tampere-kouluttaa-ensimmaiset-robottibussien-turvakuljettajat/

    Ensimmäiset robottibussit aloittavat Tampereen joukkoliikenteessä vielä tämän vuoden aikana, joten niitä varten tarvitaan myös turvallisuudesta huolehtiva kuljettaja-valvoja. Heidän koulutus käynnistyy syyskuun aikana Tampereen Aikuiskoulutuskeskus TAKKissa. Mukana on myös operoinnista vastaava Roboride Oy.

    Reply
  17. Tomi Engdahl says:

    Hybrid Brain-Computer Interfaces Could Improve Road Safety by Reading Drivers’ Minds — Literally
    Designed to reduce accidents as an additional input to an intelligent driver assistance system (IDAS), this hBCI approach shows promise.
    https://www.hackster.io/news/hybrid-brain-computer-interfaces-could-improve-road-safety-by-reading-drivers-minds-literally-4ac6169eecf2

    Reply
  18. Tomi Engdahl says:

    The researchers’ technique can lower the voltage in an EV’s DC bus to 60 volts in just five seconds.

    New Technique Reduces Electrocution Risk After EV Crash Some components can maintain a dangerous voltage for up to 5 minutes post-crash
    https://spectrum.ieee.org/ev-safety?share_id=7221384&socialux=facebook&utm_campaign=RebelMouse&utm_content=IEEE+Spectrum&utm_medium=social&utm_source=facebook#toggle-gdpr

    Although the chances are low, gas-powered cars can sometimes catch on fire following a crash. But as the market shifts more towards electric vehicles (EVs), is there an equivalent safety issue, whereby passengers might be electrocuted following a crash?

    Indeed, there is some risk that EVs—which rely on batteries with extremely high voltages—could electrocute passengers after a collision.

    He notes that the propulsion systems of electric vehicles rely on batteries with very high voltages between 346 volts and 800 V. For safety reasons, the Economic Commission for Europe of the United Nations (UNECE) Regulation R94 has already specified that, following a crash, the voltages in any vehicle components, except the battery itself, must drop to drop to a safe level (60 V) in less than a minute.

    To accommodate this, electric vehicles are programmed with a protection mode that is instantly triggered following a collision. “The breaker will be tripped immediately to isolate the battery from the other components, and the axle is disconnected from the traction motor by the gear box and the [propulsion system] just rotates with no load,” explains Hu. “However, in this case, the residual electrical and mechanical energy stored in the capacitor and motor respectively will be maintained within the DC bus at the initial level for a long period—as long as over 5 minutes—not only violating the high-voltage safety requirement but increasing the possibility of electric shock.”

    To address this issue, Hu’s team designed a hybrid approach, which relies on both the internal machine windings and external bleeder circuits to achieve the quick and safe discharge. “With the hybrid approach, the machine windings can be adopted as the auxiliary plant for the external bleeder circuits so as to reduce its size, achieving a relatively lightweight and cost-effective discharge technique suited to any EV drives,” explains Chao Gong, a member of Hu’s team who is now a postdoctoral researcher at the University of Alberta

    The results show that the combination of circuit bleeders and internal machine windings can safely lowered the voltage of the DC bus to 60 V in just five seconds, which is among the fastest discharge times observed, and well within the UNECE safety guidelines.

    Hu notes that his team’s proposed method is low cost, involves a compact structure, and is high reliability.

    He is currently collaborating with Dynex Semiconductor and Lotus Cars to test the technology in real-world settings.

    Reply
  19. Tomi Engdahl says:

    Rebecca Bellan / TechCrunch:
    CEO Kyle Vogt says that Cruise will launch commercial robotaxi services in Austin and Phoenix “in the next 90 days and before the end of 2022” — GM’s self-driving technology unit Cruise will launch commercial robotaxi services in Austin, Texas and Phoenix …

    https://techcrunch.com/2022/09/12/cruise-to-launch-robotaxi-services-in-austin-phoenix-before-end-of-2022/

    Reply
  20. Tomi Engdahl says:

    Our Next Energy debuts exotic new battery made from cheap, abundant metal
    https://techcrunch.com/2022/09/13/our-next-energy-debuts-exotic-new-battery-made-from-cheap-abundant-metal/?tpcc=ecfb2020

    The energy transition is just getting warmed up. For proof, see Our Next Energy. The Michigan-based startup is developing a trick dual-chemistry battery pack that’s the sort of innovation that’ll likely come to define the climate tech economy.

    The heart of ONE’s technology is a battery management system that allows an EV to use two different cell chemistries: one for daily driving and the other for longer road trips. It’s an innovation that has allowed the company to look at materials that had previously been cast aside, those once thought unfit for EV duty.

    “Why don’t we actually divide this into two problems, not one problem?”
    ONE CEO Mujeeb Ijaz

    Manganese is one such metal, and today, ONE announced a manganese-rich, anode-free battery that can extend an EV’s range by an estimated 300 miles.

    If the company can produce the cells en masse, it could help alleviate some of the EV supply chain crunch because manganese is quite abundant — only 11 elements are more commonly found in the Earth’s crust.

    Reply
  21. Tomi Engdahl says:

    What ADAS engineers need to know about the new NCAP requirements for radar
    https://e2e.ti.com/blogs_/b/behind_the_wheel/posts/what-adas-engineers-need-to-know-about-the-new-ncap-requirements-for-radar?HQS=asc-null-null-adas_awr2944apl-exexnl-blog-ElectronicDesign_0913-wwe_int&DCM=yes&dclid=CMmbyLHgk_oCFVSbGAod-5UH1Q

    The Euro New Car Assessment Program (NCAP) recently updated their standards for radar to improve driver assistance features in new cars.

    NCAP standards vary by region; in the U.S., our NCAP is governed by the National Highway and Traffic Safety Administration a.k.a. NHTSA and the Global NCAP is a centralized organization. However, all organizations have the same goal: to set standards that make cars and driving safer. The organizations provide ratings in the form of 0-5 stars to help consumers make informed new car buying decisions.

    In many cases, Euro NCAP has been the first to set standards that raise the bar for the auto industry worldwide. The latest regulation, No. 79, specifies the minimum distance and operation speed for radar in blind-spot detection and lane-change assistance.

    For radar, “Minimum distance and minimum operation speed” (section 5.6.4.8) section, helps finding the minimum operation speed Vsmin, down to which the ACSF of Category C is permitted to perform a lane change maneuver, with minimum distance Srear which radar can support.

    In other words, it helps to identify how far blind spot detection radar sensor should detect at a minimal operating speed of 20km/h for ACSF of Category C doing LCM.

    Making it safer to change lanes

    A safe lane change maneuver is one where the approaching vehicle has sufficient time to react (decelerate) to ensure at all time a safe driving distance between the two vehicles. Specifically, the R79 regulation (in section 5.6.4.7) defines a potential lane change maneuver by an ego vehicle as critical if an approaching vehicle in the target lane would have to decelerate at a higher level than 3m/s², 0.4 seconds after the lane change maneuver has started, to ensure the distance between the two vehicles is never less than that the distance the ego vehicle travels in 1 second.

    With knowledge of the distance and speed of the approaching vehicle and the speed of the ego vehicle it is possible to calculate the critical distance Scritical (Section 5.6.4.7.1) between the two vehicles at the start of the lane change. A lane change maneuver is not permitted if the distance at the start of the maneuver between the two vehicles is less than Scritical. Figure 1 below plots Scritical as a function of the speed of the ego vehicle. Note that for an ego vehicle speed of 20kmph, the critical distance is close to 180m.

    Reply
  22. Tomi Engdahl says:

    Litium ei tule riittämään sähköautoihin
    https://etn.fi/index.php/13-news/13993-litium-ei-tule-riittaemaeaen-saehkoeautoihin

    Sähköautoilu pelastaa ison maailmasta, tuntuu moni ajattelevan. Mutta viime vuonna maailmassa oli hieman yli 1,4 miljardia ajoneuvoa, joista noin puoli prosenttia kulki sähköllä. Jos kaikkien autojen voimalähde pitäisi vaihtaa fossiilisista sähköön, litium ei tule riittämään.

    Litium on erinomainen materiaali kevyen akun tai akuston toteuttamiseen. Se on kevyin metalli, jonka sähkökemiallinen potentiaali on suurin. Näin ollen litiumilla voidaan toteuttaa suuria energia- ja tehotiheyksiä.

    Litiumakuissa käytetään materiaalina eniten litiumkarbonaattia, sen jälkeen litiumhydroksidia ja litiumbromidia. Litiumpitoisuudet näissä ovat korkeimmillaankin vain 1,6 prosenttia, joten niitä tarvitsee louhia valtavia määriä.

    Vuonna 2019 litiumtuotannon määräksi arvioitiin globaalisti 77 000 tonnia. Eniten litiumia tuotettiin Australiassa, jonka kaivoksista tuli 55 prosenttia kaikesta litiumista. Chilen osuus oli 23 prosenttia ja Kiinan 10 prosenttia. Jotta raaka-aineet riittävät kaikkiin tuleviin akkuihin, täytyy kaivontoiminnan kasvaa todennäköisesti monisatakertaiseksi.

    Ongelma on se, että tunnetut litiumvarannot riittävät vajaan yhden sähköautopolven tarpeisiin. Tämän takia uusia varantoja halutaan käyttää mahdollisimman nopeasti. Euroopassa on tällä hetkellä kaksi merkittävää litium-kaivoshanketta, toinen Itävallassa ja toinen Suomessa Kaustisilla. Muita hankkeita on Saksassa, Iso-Britanniassa, Tshekissä, Espanjassa ja Serbiassa.

    Reply
  23. Tomi Engdahl says:

    Ensimmäinen kyberiskut kestävä muisti autoihin
    https://etn.fi/index.php/13-news/13995-ensimmaeinen-kyberiskut-kestaevae-muisti-autoihin

    ISO/SAE 21434 -standardi suojaa ajoneuvojen ja autojen turvallisuutta määrittelemällä vaatimukset, jotka tekevät autojen järjestelmistä kestävämpiä kyberhyökkäyksiä vastaan. Taiwanilainen Winbond on nyt esitellyt markkinoiden ensimmäinen muistin, joka on sertifioitu uutta standardia varten.

    ISO 21434 hahmottelee kriteerit, joita tarvitaan autoteollisuuden järjestelmien konseptin, kehityksen, tuotannon, käytön ja käytöstä poistamisen aikana. Monet autonvalmistajat ja niiden komponenttitoimittajat tekevät tästä osastosta pakollisen parantaakseen kyberuhkien hallintaa merkittävästi.

    ISO/SAE 21434 -standardi koskee ajoneuvojen mikrotietokoneita ja niiden osia. Autoteollisuuden on mukautettava laitteita, jotka pystyvät täyttämään tämän standardin ja tarjoamaan vaaditun suojan kyberuhkia vastaan.

    Reply
  24. Tomi Engdahl says:

    Läpimurto: Sähköautoihin metalliakku 3-5 vuoden kuluessa
    https://etn.fi/index.php/13-news/13997-laepimurto-saehkoeautoihin-metalliakku-3-5-vuoden-kuluessa

    Harvardin yliopiston materiaalitieteiden laitoksella on kehitetty kiinteä litiumakku, joka mahdollistaa auton akuston lataamisen nykyisiä akkuja nopeammin ja turvallisemmin. Tekniikan tuominen markkinoille vie aikaa 3-5 vuotta, sen kehittäjät lupaavat.

    Projektia on johtanut apulaisprofessori Xin Li, jonka johdolla myös perustettiin spinoff-yritys Adden Technology jo vuonna 2021 tekniikan kaupallistamiseksi. Alkuvaiheessa tavoitteena oli kämmenen kokoinen akku, mutta sen skaalaamiseen suurempaan ei ole mitään esteitä, Xin Li kertoo. Nyt tavoitteeksi onkin asetettu sähköauton akusto.

    Addenin akku eroaa nykyisistä litiumakuista siten, että siinä ei käytetä nestemäistä elektrolyyttiä. Näiden ns. kiinteiden akkujen uskotaan ratkaisevan monia akkutekniikan ongelmia: ne ovat turvallisempia ja latautuvat huomattavasti nopeammin.

    Reply
  25. Tomi Engdahl says:

    Enhanced mmWave Radar Sensor Improves ADAS and Meets New Regulations
    Feb. 8, 2022
    Sponsored by Texas Instruments: Meeting more stringent regulatory guidelines in terms of ADAS functionality, particularly corner turning, requires more sophisticated sensors. A new radar sensor fulfills that need.
    https://www.electronicdesign.com/markets/automotive/article/21215725/texas-instruments-enhanced-mmwave-radar-sensor-improves-adas-and-meets-new-regulations?utm_source=EG+ED++Sponsor+Paid+Promos&utm_medium=email&utm_campaign=CPS220907102&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Advanced driver-assistance systems (ADAS) consist of automotive electronic monitoring and control devices that help the driver avoid collisions. These platforms use multiple sensors to detect nearby vehicles and provide information such as distance, direction, and speed that allows the driver to adjust to potentially dangerous situations. Newer systems also typically implement automatic corrective action without the driver’s participation.

    Most of the latest vehicles include ADAS as a standard feature, but their capabilities vary. Regulatory agencies continue to require ever more sophisticated capabilities to further reduce collisions.

    Reply
  26. Tomi Engdahl says:

    Automakers Forge Ahead with Hydrogen-Fuel-Cell Vehicle Development
    Aug. 24, 2022
    BMW and Toyota will team up to produce hydrogen-fuel-cell vehicles starting mid-decade. The partnership will help BMW achieve its target of 50% electrification across its lineup two years ahead of its expected date of 2030.
    https://www.electronicdesign.com/markets/automotive/article/21249381/electronic-design-automakers-forge-ahead-with-hydrogenfuelcell-vehicle-development?utm_source=EG+ED++Sponsor+Paid+Promos&utm_medium=email&utm_campaign=CPS220907102&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    Details of the BMW-Toyota hydrogen-fuel-cell joint effort.
    Benefits and issues surrounding hydrogen fuel cells.
    How does the “Inflation Reduction” Act impact this techology’s development?

    Reply
  27. Tomi Engdahl says:

    Syyte: Miljardööri älytti sijoittajia alamäkeen vierivällä”sähköautolla” – Kaikkien aikojen sähköautohuijaus?
    Juha Salonen14.9.202218:02AUTOSÄHKÖAUTOKAUPPASIJOITTAMINENTEKNIIKKATEOLLISUUS
    Nikola myöntää autojensa vierineen esittelyvideolla alamäkeen ilman sähköistä voimansiirtoa.
    https://www.tekniikkatalous.fi/uutiset/tt/3aab0db4-21ed-4fae-98a2-fe3e57126ca3?utm_term=Autofeed&utm_medium=Social&utm_source=Facebook#Echobox=1663171027

    Reply
  28. Tomi Engdahl says:

    Bridging 12 V and 48 V in dual-battery automotive systems
    How a bidirectional buck-boost controller helps support a dual-bus topology
    https://www.ti.com/lit/wp/slpy009/slpy009.pdf?HQS=app-null-null-pwrbrand_density-asset-whip-ElectronicDesign-wwe&ts=1663571418693&ref_url=https%253A%252F%252Fwww.electronicdesign.com%252F

    Bridging 12 V and 48 V in dual-battery automotive systems2November 2018
    The 12 V lead-acid battery system has met its
    match. With increasingly strict emission regulations,
    growing power load requirements of advanced
    automotive electronics and the conversion from
    mechanical components to electronic functions,
    the traditional automotive battery of choice has
    reached its current-carrying capacity.
    In response, automakers and their suppliers have developed a second, additional
    electrical system at 48 V which delivers more power at lower currents than a traditional
    12 V battery can produce alone.

    The new configuration consists of two separate
    branches. The traditional 12 V bus uses a
    conventional lead-acid battery for customary loads
    such as infotainment, lighting and windows; while
    the new 48 V system can support heavier loads
    such as starter generator units, air-conditioning
    compressors, active chassis systems, electric
    superchargers, turbochargers and
    regenerative braking.

    The 48 V system saves weight in the wiring harness.
    A higher voltage allows for smaller wire gauge,
    which reduces cable size and weight without
    sacrificing performance; today’s high-end vehicles
    can have more than 4 km of wiring

    Along with the traditional 12 V battery, a 48 V
    lithium-ion battery or a supercapacitor and a
    bidirectional DC/DC converter round out the
    dual-battery system to deliver up to 10 kW of
    available power. Bidirectional power transfer is
    required to charge either battery if it’s discharged
    and to provide extra power for the opposite
    voltage rail in an overload condition.

    Reply
  29. Tomi Engdahl says:

    Nvidia tuo yhden sirun superkoneen autoihin
    https://etn.fi/index.php/13-news/14024-nvidia-tuo-yhden-sirun-superkoneen-autoihin

    Nvidia esitteli GTC-tapahtumassaan tuttuun tapaa suuren joukon uusia tuotteita. Yksi mielenkiintoisimmista on autojen DRIVE-laskenta-alustan uusi Thor-prosessori. Se pakkaa 2000 teraflopsin suorituskyvyn yhdelle 77 miljardin transistorin piirille.

    Nvidia kertoi, että Thor nojaa yli 15 tuhannen suunnittelutyövuoden työhön. Suuresta tehosta on hyötyä, sillä ensimmäistä kertaa sama piiri prosessoi niin autonomista ajamista kuin kaikkea auton kojelaudassa tapahtumaa viihteestä alkaen.

    Thor perustuu samoihin tekoälyominaisuuksiin, joihin perustuvat Nvidian uusimmat Hopper-grafiikkaprosessorit, yrityksen ensimmäinen palvelinpiirien CPU eli Grace sekä ada Lovelace -grafiikkaprosessori. Nvidia kutsuu moni-instanssiarkkitehtuuriksi rakennetta, jossa eri toiminnalliset alueet eristetään toisistaan.

    Käytännössä tämä tarkoittaa, että esimerkiksi ADAS-toimintojen kriittiset prosessit voidaan ajaa omassa lohkossaan QNX:llä, kokonaisuutta voidaan ohjata Linuxilla omassa hiekkalaatikossaan ja kuljettajan käyttöliittymää piirretään omassa Androidissaan.

    Nvidia ilmoitti, että Thor tulee kaupallisiin ajoneuvoihin vuoden 2025 alussa. Ensimmäiseksi asiakkaaksi nimettiin Gelyn omistama kiinalainen ZEEKR, joka kehittää pitkälle automatisoituja sähköautoja.

    Reply
  30. Tomi Engdahl says:

    Hydrogen Fuel Cells, Hydrogen ICEs, and 48-V Systems Shine at Truck Show
    Sept. 20, 2022
    While not as in vogue as battery electric vehicles, considerable progress is being made in developing zero-carbon hydrogen fuel ICEs as well as hydrogen fuel cells powering electric traction motors for trucks.
    https://www.electronicdesign.com/markets/automotive/article/21251023/hydrogen-fuel-cells-hydrogen-ices-and-48v-systems-shine-at-truck-show?utm_source=EG+ED+Analog+%26+Power+Source&utm_medium=email&utm_campaign=CPS220915019&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    What you’ll learn:

    The hot topics at IAA Transportation 2022.
    Latest innovations in the hydrogen ICE and hydrogen fuel-cell spaces.
    The trend toward building 48-V systems.

    IAA Transportation 2022, kicking off today in Hannover, Germany and running through September 25, is the world’s largest platform for transport and logistics. It’s restarting after the break caused by the pandemic, and arrives with a new concept: Formerly known as IAA Commercial Vehicles, which focused on light and heavy commercial vehicles, the show now covers the entire transport and logistics spectrum.

    Commercial vehicle suppliers are acutely aware that emission standards are tightening worldwide. The European Union and the U.S. have initiated regulatory processes to update heavy-duty vehicle emission standards.

    Reply
  31. Tomi Engdahl says:

    MIPI Alliance: Driving Automotive and IoT Specs Forward eBook
    Sept. 14, 2022
    This eBook delves into two of the MIPI Alliance’s standards initiatives: the RF Front-End Control Interface and A-PHY serializer-deserializer (SerDes) physical layer interface. Download your free copy today!
    https://www.electronicdesign.com/markets/automotive/document/21250635/mipi-alliance-driving-automotive-and-iot-specs-forward-ebook

    In this eBook, brought to you by Microwaves & RF and Electronic Design, you’ll find articles on two of the many standards initiatives of the MIPI Alliance:

    The RF Front-End Control Interface (RFFE), which simplifies design, configuration, and integration of RF front ends in 5G, automotive, industrial, and IoT use cases.
    The A-PHY serializer-deserializer (SerDes) physical layer interface, aimed at providing automotive OEMs and their suppliers with end-to-end connectivity for cameras, sensors, and displays that comprise advanced driver-assistance systems (ADAS), in-vehicle infotainment (IVI) systems, and, ultimately, fully autonomous vehicles.

    Reply
  32. Tomi Engdahl says:

    ML-Based Radar Detection Software Boosts Accuracy, Safety in AV Systems
    Sept. 14, 2022
    Using machine-learning solutions to address sensor performance can significantly improve ADAS performance in smart vehicles.
    https://www.electronicdesign.com/markets/automotive/article/21250629/electronic-design-mlbased-radar-detection-software-boosts-accuracy-safety-in-av-systems?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_campaign=CPS220921174&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  33. Tomi Engdahl says:

    Automotive MCUs Eye EV Platform Integration
    Sept. 9, 2022
    Designed to integrate next-gen drivetrain, electrification solutions, and domain-oriented, over-the-air updatable systems, ST’s new MCU series is intended to deliver a new level of real-time performance, safety, and determinism.
    https://www.electronicdesign.com/markets/automotive/article/21250440/electronic-design-automotive-mcus-eye-ev-platform-integration?utm_source=EG+ED+Auto+Electronics&utm_medium=email&utm_campaign=CPS220921174&o_eid=7211D2691390C9R&rdx.identpull=omeda|7211D2691390C9R&oly_enc_id=7211D2691390C9R

    Reply
  34. Tomi Engdahl says:

    NTSB wants alcohol detection systems installed in all new cars in US
    Proposed requirement would prevent or limit vehicle operation if driver is drunk.
    https://arstechnica.com/tech-policy/2022/09/ntsb-wants-alcohol-detection-systems-installed-in-all-new-cars-in-us/

    The US National Transportation Safety Board (NTSB) yesterday recommended that all new vehicles be equipped with alcohol detection systems that can stop people from driving while drunk.

    The NTSB can’t issue such a regulation on its own but urged the National Highway Traffic Safety Administration (NHTSA) to do so. The NTSB said it “is recommending measures leveraging new in-vehicle technologies that can limit or prohibit impaired drivers from operating their vehicles as well as technologies to prevent speeding.”

    If adopted, this would require “passive vehicle-integrated alcohol impairment detection systems, advanced driver monitoring systems or a combination of the two that would be capable of preventing or limiting vehicle operation if it detects driver impairment by alcohol,” the NTSB said. The agency urged the NHTSA to “require all new vehicles to be equipped with such systems.”

    Under a US law enacted last year, the NHTSA is already required to examine whether it can issue this type of rule.

    Reply
  35. Tomi Engdahl says:

    https://etn.fi/index.php/13-news/14039-autoihin-menee-jo-joka-kolmas-mikro-ohjain

    Mikro-ohjaimia myydään vuonna 2026 jo 27 miljardilla dollarilla, tietää tutkimuslaitos Yple Developpement kertoa. Useampi kuin joka kolmas näistä menee autoihin eli osaksi auton kasvavaa elektroniikkaa.

    Autot ovat jo nyt selvästi suurin sektori mikro-ohjaimille. Tänä vuonna autoihin menee 32 prosenttia ohjainsiruista, joten osuus kasvaa koko ajan. Viisi suurinta mikro-ohjainten toimittajaa ovat NXP, Renesas, Infineon, STMicroelectronics ja Microchip.

    Reply
  36. Tomi Engdahl says:

    Sähköauton suurin vika on tässä
    https://etn.fi/index.php/13-news/14038-saehkoeauton-suurin-vika-on-taessae

    Reuters järjesti kesällä Automotive Europe 2022 -tapahtuman, jossa ruodittiin autoteollisuuden suurimpia haasteita. Konferenssin anti on nyt koottu yhteen. Sähköautojen suurimmaksi viaksi valmistajat näkevät sen, että se on tuotteena keskeneräinen. Silti autoja ryhdyttiin työntämään markkinoille ja kuluttajille.

    Ongelmia on monella sektorilla. Akuista ja niiden valmistamiseen tarvittavista raaka-aineista on pulaa. Latausinfra kasvaa, mutta on hyvin rajallinen edelleen. EU:n päätöksetkin yllättivät valmistajat.

    EU:n vaatimukset täyttääkseen sähköautojen valmistajien on valmistettava akustonsa Euroopassa. Tämän takia Eurooppaan suunnitellaan gigaluokan akkutehtaita. Myös materiaalit ovat iso ongelma. Vaikka niitä – vaikkapa litiumia – löytyisikin lisää, niiden hinnan kasvu nostaa myös sähköautojen hintoja. Tällöin kysyntä hiipuu.

    Akkuteknologia ei millään muotoa ole kehityksensä päässä. Mikäli akuston kokoa voitaisiin kutistaa vaikkapa 30 prosenttia, koko sähköauton suunnittelu voitaisiin ajatella uusiksi.

    Latausjärjestelmien kirjo on yksi ongelmista. Euroopassa on tällä hetkellä käytössä 28 erilaista latausjärjestelmää. Tämä on Geely Europen johtajan Frank Klaasin mukaan hankala tilanne. – Annamme kuluttajille laitteen, vaikka infra ei ole vielä kunnossa.

    Latausjärjestelmä koostuu paitsi latureista ja niiden löytämiseen kartalla, myös palveluista, jotka kertovat, missä on vapaa laturi. Myös laskutus pitää olla täysin automatisoitua. Ericssonin autopuolen johtaja Magnus Gunnarssonin mukaan ongelma on ekosysteemissä, ei teknologiassa. – Auto, latausasemat ja pankit ovat kaikki yhteydessä verkkoon, mutta eivät toisiinsa, Gunnarsson muistuttaa.

    Hänen mukaansa kyse ei ole niinkään latausahdistuksesta kuin epätietoisuudesta, mitä tapahtuu, kun latausasemalle ajaa. Kun auto on vaikkapa 20 minuuttia julkisessa latauspisteessä, sen ohjelmisto voitaisiin samalla automaattisesti päivittää 5G-vekron yli, Gunnarsson visioi.

    Reply
  37. Tomi Engdahl says:

    https://etn.fi/index.php/13-news/14050-kehitae-auton-ecu-ilman-rautaa

    Täysin integroitu ympäristö tukee yhteissimulaatiota, virheenkorjausta ja jäljitystä, nopeaa simulointia ja hajautettua prosessointiohjelmistoa useilla järjestelmäpiireillä ja mikro-ohjaimilla. Renesasin mukaan uusi ohjelmistokehitysympäristö on yksi askel tiellä, jossa autoteollisuus siirtyy kohti “Software First” -tuotekehitystä. Siinä ajoneuvon arvon määrittelee yhä enemmän sen ohjelmisto.

    Ensimmäiset kehitysympäristötyökalut ovat nyt saatavilla R-Car S4- ja RH850/U2A-piireille. Integroimalla ja yhdistämällä simulaattoreita, kuten R-Car Virtual Platformin, joka toimitettiin aiemmin yksisiruisille yksittäisille laitteille, Renesas tarjoaa uuden simulointiympäristön usean laitteen toimintaan. Suunnittelut voidaan nyt optimoida tasapainottamalla eri sovellustoimintoja ja sisällyttämällä ohjelmiston varmennus järjestelmätasolla.

    Reply
  38. Tomi Engdahl says:

    Uudenkaupungin auto­tehtaalta on valmistunut poikkeuksellinen sähkö­auto – tältä se näyttää https://www.is.fi/autot/art-2000009099073.html

    Reply

Leave a Reply to Tomi Engdahl Cancel reply

Your email address will not be published. Required fields are marked *

*

*